These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33627722)

  • 21. Design and Development of a Broadband Vibration Energy Harvester Suitable for Tractor Exhaust Cylinder Vibration.
    Ma X; Zhou T; Gong L; Zhang X; Yao F; Wang C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Nonlinear Impact-Driven Triboelectric Vibration Energy Harvester for Frequency Up-Conversion.
    Abumarar H; Ibrahim A
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester.
    Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center.
    Chen J; Liu X; Wang H; Wang S; Guan M
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration.
    Tsukamoto T; Umino Y; Shiomi S; Yamada K; Suzuki T
    Sci Technol Adv Mater; 2018; 19(1):660-668. PubMed ID: 30275914
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting.
    Ben Ammar M; Sahnoun S; Fakhfakh A; Viehweger C; Kanoun O
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-frequency meandering piezoelectric vibration energy harvester.
    Berdy DF; Srisungsitthisunti P; Jung B; Xu X; Rhoads JF; Peroulis D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):846-58. PubMed ID: 22622969
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters.
    Thainiramit P; Yingyong P; Isarakorn D
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication and Characterization of the Li-Doped ZnO Thin Films Piezoelectric Energy Harvester with Multi-Resonant Frequencies.
    Zhao X; Li S; Ai C; Liu H; Wen D
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30917569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Triboelectric-Electromagnetic Hybrid Wind-Energy Harvester with a Low Startup Wind Speed in Urban Self-Powered Sensing.
    Li G; Cui J; Liu T; Zheng Y; Hao C; Hao X; Xue C
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. All-in-One High-Power-Density Vibrational Energy Harvester with Impact-Induced Frequency Broadening Mechanisms.
    Cao Y; Shen W; Li F; Qi H; Wang J; Mao J; Yang Y; Tao K
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of a multi-direction piezoelectric and electromagnetic hybrid energy harvester used for ocean wave energy harvesting.
    Chen L; Li C; Fang J
    Rev Sci Instrum; 2023 Dec; 94(12):. PubMed ID: 38088781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wearable All-Fabric Hybrid Energy Harvester to Simultaneously Harvest Radiofrequency and Triboelectric Energy.
    Kou Z; Zhang C; Yu B; Chen H; Liu Z; Lu W
    Adv Sci (Weinh); 2024 May; 11(17):e2309050. PubMed ID: 38380554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Power Density Improvement of Piezoelectric Energy Harvesters via a Novel Hybridization Scheme with Electromagnetic Transduction.
    Li Z; Xin C; Peng Y; Wang M; Luo J; Xie S; Pu H
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-frequency, broadband piezoelectric vibration energy harvester with folded trapezoidal beam.
    Wang H; Li B; Liu Y; Zhao W
    Rev Sci Instrum; 2019 Mar; 90(3):035001. PubMed ID: 30927805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester.
    Hu Y; Yang J; Jing Q; Niu S; Wu W; Wang ZL
    ACS Nano; 2013 Nov; 7(11):10424-32. PubMed ID: 24168315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing the Bandwidth and Energy Production of Piezoelectric Energy Harvester Using Novel Multimode Bent Branched Beam Design for Human Motion Application.
    Piyarathna IE; Lim YY; Edla M; Thabet AM; Ucgul M; Lemckert C
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester.
    Aranda JJ; Bader S; Oelmann B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.