These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33627888)

  • 1. SWAT ungauged: Water quality modeling in the Upper Mississippi River Basin.
    Qi J; Zhang X; Yang Q; Srinivasan R; Arnold JG; Li J; Waldholf ST; Cole J
    J Hydrol (Amst); 2020; 584():. PubMed ID: 33627888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of agricultural conservation practices on N loads in the Mississippi-atchafalaya river basin.
    Santhi C; Arnold JG; White M; Di Luzio M; Kannan N; Norfleet L; Atwood J; Kellogg R; Wang X; Williams JR; Gerik T
    J Environ Qual; 2014 Nov; 43(6):1903-15. PubMed ID: 25602207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrate loading projection is sensitive to freeze-thaw cycle representation.
    Wang Q; Qi J; Li J; Cole J; Waldhoff ST; Zhang X
    Water Res; 2020 Nov; 186():116355. PubMed ID: 32890809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Machine Learning Approach to Predict Watershed Health Indices for Sediments and Nutrients at Ungauged Basins.
    Mallya G; Hantush MM; Govindaraju RS
    Water (Basel); 2023; 15(3):1-23. PubMed ID: 37309416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using SWAT to Evaluate Streamflow and Lake Sediment Loading in the Xinjiang River Basin with Limited Data.
    Yuan L; Forshay KJ
    Water (Basel); 2019 Dec; 12(1):39. PubMed ID: 32983578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pronounced Increases in Future Soil Erosion and Sediment Deposition as Influenced by Freeze-Thaw Cycles in the Upper Mississippi River Basin.
    Wang Q; Qi J; Qiu H; Li J; Cole J; Waldhoff S; Zhang X
    Environ Sci Technol; 2021 Jul; 55(14):9905-9915. PubMed ID: 34252277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA.
    Zeiger SJ; Hubbart JA
    Sci Total Environ; 2016 Dec; 572():232-243. PubMed ID: 27501422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass production in the Lower Mississippi River Basin: Mitigating associated nutrient and sediment discharge to the Gulf of Mexico.
    Ha M; Zhang Z; Wu M
    Sci Total Environ; 2018 Sep; 635():1585-1599. PubMed ID: 29703598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of alternative climate datasets and evapotranspiration methods for the Upper Mississippi River Basin using SWAT within HAWQS.
    Chen M; Gassman PW; Srinivasan R; Cui Y; Arritt R
    Sci Total Environ; 2020 Jun; 720():137562. PubMed ID: 32325579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Applicability of modified SWAT model (SWAT-Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan.
    Chiang LC; Liao CJ; Lu CM; Wang YC
    Environ Monit Assess; 2021 Jul; 193(8):520. PubMed ID: 34313852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling water and nutrient fluxes in the Danube River Basin with SWAT.
    Malagó A; Bouraoui F; Vigiak O; Grizzetti B; Pastori M
    Sci Total Environ; 2017 Dec; 603-604():196-218. PubMed ID: 28628812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing daily streamflow simulation using the coupled SWAT-BiLSTM approach for climate change impact assessment in Hai-River Basin.
    Zhang X; Qi Y; Liu F; Li H; Sun S
    Sci Rep; 2023 Sep; 13(1):15169. PubMed ID: 37704827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transferability of SWAT Models between SWAT2009 and SWAT2012.
    Seo M; Yen H; Kim MK; Jeong J
    J Environ Qual; 2014 May; 43(3):869-80. PubMed ID: 25602816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated modeling approach for estimating the water quality benefits of conservation practices at the river basin scale.
    Santhi C; Kannan N; White M; Di Luzio M; Arnold JG; Wang X; Williams JR
    J Environ Qual; 2014 Jan; 43(1):177-98. PubMed ID: 25602551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SWAT model application for evaluating agricultural conservation practice effectiveness in reducing phosphorous loss from the Western Lake Erie Basin.
    Yuan Y; Koropeckyj-Cox L
    J Environ Manage; 2022 Jan; 302(Pt A):114000. PubMed ID: 34872174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.
    Narula KK; Gosain AK
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of HSPF and SWAT models performance for runoff and sediment yield prediction.
    Im S; Brannan KM; Mostaghimi S; Kim SM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Sep; 42(11):1561-70. PubMed ID: 17849297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating multimedia models to assess nitrogen losses from the Mississippi River basin to the Gulf of Mexico.
    Yuan Y; Wang R; Cooter E; Ran L; Daggupati P; Yang D; Srinivasan R; Jalowska A
    Biogeosciences; 2018; 15():7059-7076. PubMed ID: 31320910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.
    Yang X; Tan L; He R; Fu G; Ye J; Liu Q; Wang G
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26545-26561. PubMed ID: 28952024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins.
    Vigiak O; Malagó A; Bouraoui F; Vanmaercke M; Poesen J
    Sci Total Environ; 2015 Dec; 538():855-75. PubMed ID: 26356993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.