These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Some Peculiarities in the Dose Dependence of Separate and Combined In Vitro Cardiotoxicity Effects Induced by CdS and PbS Nanoparticles With Special Attention to Hormesis Manifestations. Panov V; Minigalieva I; Bushueva T; Fröhlich E; Meindl C; Absenger-Novak M; Shur V; Shishkina E; Gurvich V; Privalova L; Katsnelson BA Dose Response; 2020; 18(1):1559325820914180. PubMed ID: 32231470 [TBL] [Abstract][Full Text] [Related]
3. Some data on the comparative and combined toxic activity of nanoparticles containing lead and cadmium with special attention to their vasotoxicity. Sutunkova MP; Minigalieva IA; Klinova SV; Panov VG; Gurvich VB; Privalova LI; Sakhautdinova RR; Shur VY; Shishkina EV; Shtin TN; Riabova JV; Katsnelson BA Nanotoxicology; 2021 Mar; 15(2):205-222. PubMed ID: 33186499 [TBL] [Abstract][Full Text] [Related]
5. On an extended understanding of the term "hormesis" for denoting alternating directions of the organism's response to increasing adverse exposures. Katsnelson BA; Panov VG; Minigalieva IA; Bushueva TV; Gurvich VB; Privalova LI; Klinova SV; Sutunkova MP Toxicology; 2021 Jan; 447():152629. PubMed ID: 33189796 [TBL] [Abstract][Full Text] [Related]
6. New Data on Variously Directed Dose-Response Relationships and the Combined Action Types for Different Outcomes of Panov V; Bushueva T; Minigalieva I; Naumova A; Shur V; Shishkina E; Sutunkova M; Gurviсh V; Privalova L; Katsnelson B Dose Response; 2021; 19(4):15593258211052420. PubMed ID: 34867125 [TBL] [Abstract][Full Text] [Related]
7. More data on in vitro assessment of comparative and combined toxicity of metal oxide nanoparticles. Bushueva T; Minigalieva I; Panov V; Kuznetsova A; Naumova A; Shur V; Shishkina E; Gurviсh V; Privalova L; Katsnelson B Food Chem Toxicol; 2019 Nov; 133():110753. PubMed ID: 31400477 [TBL] [Abstract][Full Text] [Related]
8. Effects of exposure to heavy metals on viability, maturation, fertilization, and embryonic development of buffalo (Bubalus bubalis) oocytes in vitro. Nandi S; Gupta PS; Selvaraju S; Roy SC; Ravindra JP Arch Environ Contam Toxicol; 2010 Jan; 58(1):194-204. PubMed ID: 19475365 [TBL] [Abstract][Full Text] [Related]
9. Some considerations concerning the theory of combined toxicity: a case study of subchronic experimental intoxication with cadmium and lead. Varaksin AN; Katsnelson BA; Panov VG; Privalova LI; Kireyeva EP; Valamina IE; Beresneva OY Food Chem Toxicol; 2014 Feb; 64():144-56. PubMed ID: 24291454 [TBL] [Abstract][Full Text] [Related]
11. Cadmium-free sugar-chain-immobilized fluorescent nanoparticles containing low-toxicity ZnS-AgInS2 cores for probing lectin and cells. Shinchi H; Wakao M; Nagata N; Sakamoto M; Mochizuki E; Uematsu T; Kuwabata S; Suda Y Bioconjug Chem; 2014 Feb; 25(2):286-95. PubMed ID: 24437371 [TBL] [Abstract][Full Text] [Related]
12. Effect of low doses and high homeopathic potencies in normal and cancerous human lymphocytes: an in vitro isopathic study. Wälchli C; Baumgartner S; Bastide M J Altern Complement Med; 2006 Jun; 12(5):421-7. PubMed ID: 16813505 [TBL] [Abstract][Full Text] [Related]
13. The effect of single and combined exposures to magnetite and polymorphous silicon dioxide nanoparticles on the human A Rafieepour A; Azari MR; Khodagholi F; Jaktaji JP; Mehrabi Y; Peirovi H Environ Sci Pollut Res Int; 2019 Nov; 26(31):31752-31762. PubMed ID: 31485939 [TBL] [Abstract][Full Text] [Related]
14. Further verification of some postulates of the combined toxicity theory: New animal experimental data on separate and joint adverse effects of lead and cadmium. Klinova SV; Minigalieva IA; Privalova LI; Valamina IE; Makeyev OH; Shuman EA; Korotkov AA; Panov VG; Sutunkova MP; Ryabova JV; Bushueva TV; Shtin TN; Gurvich VB; Katsnelson BA Food Chem Toxicol; 2020 Feb; 136():110971. PubMed ID: 31751644 [TBL] [Abstract][Full Text] [Related]
15. Biofabrication of morphology improved cadmium sulfide nanoparticles using Shewanella oneidensis bacterial cells and ionic liquid: For toxicity against brain cancer cell lines. Wang L; Chen S; Ding Y; Zhu Q; Zhang N; Yu S J Photochem Photobiol B; 2018 Jan; 178():424-427. PubMed ID: 29207279 [TBL] [Abstract][Full Text] [Related]
16. Further development of mathematical description for combined toxicity: A case study of lead-fluoride combination. Panov VG; Katsnelson BA; Varaksin AN; Privalova LI; Kireyeva EP; Sutunkova MP; Valamina IE; Beresneva OY Toxicol Rep; 2015; 2():297-307. PubMed ID: 28962363 [TBL] [Abstract][Full Text] [Related]
17. Cadmium sulfide nanoparticles trigger DNA alterations and modify the bioturbation activity of tubificidae worms exposed through the sediment. Dedeh A; Ciutat A; Lecroart P; Treguer-Delapierre M; Bourdineaud JP Nanotoxicology; 2016; 10(3):322-31. PubMed ID: 26618487 [TBL] [Abstract][Full Text] [Related]
18. Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line. Miranda RR; Bezerra AG; Oliveira Ribeiro CA; Randi MA; Voigt CL; Skytte L; Rasmussen KL; Kjeldsen F; Filipak Neto F Toxicol In Vitro; 2017 Apr; 40():134-143. PubMed ID: 28063819 [TBL] [Abstract][Full Text] [Related]
19. Cadmium-specific formation of metal sulfide 'Q-particles' by Klebsiella pneumoniae. Holmes JD; Richardson DJ; Saed S; Evans-Gowing R; Russell DA; Sodeau JR Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2521-2530. PubMed ID: 9274006 [TBL] [Abstract][Full Text] [Related]
20. Oxidative injury induced by cadmium sulfide nanoparticles in A549 cells and rat lungs. Wang J; Jiang C; Alattar M; Hu X; Ma D; Liu H; Meng C; Cao F; Li W; Li Q Inhal Toxicol; 2015; 27(12):649-58. PubMed ID: 26405836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]