BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33628383)

  • 21. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular and cellular changes in the lumbar spinal cord following thoracic injury: regulation by treadmill locomotor training.
    Shin HY; Kim H; Kwon MJ; Hwang DH; Lee K; Kim BG
    PLoS One; 2014; 9(2):e88215. PubMed ID: 24520355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of p66Shc-mediated mitochondrial apoptosis via targeting prolyl-isomerase Pin1 attenuates intestinal ischemia/reperfusion injury in rats.
    Feng D; Yao J; Wang G; Li Z; Zu G; Li Y; Luo F; Ning S; Qasim W; Chen Z; Tian X
    Clin Sci (Lond); 2017 Apr; 131(8):759-773. PubMed ID: 28232511
    [TBL] [Abstract][Full Text] [Related]  

  • 24. P66shc in the spinal cord is an important contributor in complete Freund's adjuvant induced inflammatory pain in mice.
    Chen Q; Dai J; Nan F; Xu J; Chen S
    Biochem Biophys Res Commun; 2023 May; 656():63-69. PubMed ID: 36958256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting chondroitinase ABC to axons enhances the ability of chondroitinase to promote neurite outgrowth and sprouting.
    Day P; Alves N; Daniell E; Dasgupta D; Ogborne R; Steeper A; Raza M; Ellis C; Fawcett J; Keynes R; Muir E
    PLoS One; 2020; 15(1):e0221851. PubMed ID: 31961897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial-targeting antioxidant MitoQ modulates angiogenesis and promotes functional recovery after spinal cord injury.
    Huang T; Shen J; Bao B; Hu W; Sun Y; Zhu T; Lin J; Gao T; Li X; Zheng X
    Brain Res; 2022 Jul; 1786():147902. PubMed ID: 35381215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Promotion of transplanted collagen scaffolds combined with brain-derived neurotrophic factor for axonal regeneration and motor function recovery in rats after transected spinal cord injury].
    Chen X; Fan Y; Xiao Z; Li X; Yang B; Zhao Y; Hou X; Han S; Dai J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Jun; 32(6):650-659. PubMed ID: 29905040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MiR-543-5p inhibits inflammation and promotes nerve regeneration through inactivation of the NF-κB in rats after spinal cord injury.
    Zhao CL; Cui HA; Zhang XR
    Eur Rev Med Pharmacol Sci; 2019 Aug; 23(3 Suppl):39-46. PubMed ID: 31389572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pten Deletion Promotes Regrowth of Corticospinal Tract Axons 1 Year after Spinal Cord Injury.
    Du K; Zheng S; Zhang Q; Li S; Gao X; Wang J; Jiang L; Liu K
    J Neurosci; 2015 Jul; 35(26):9754-63. PubMed ID: 26134657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection.
    He QQ; Xiong LL; Liu F; He X; Feng GY; Shang FF; Xia QJ; Wang YC; Qiu DL; Luo CZ; Liu J; Wang TH
    Sci Rep; 2016 Oct; 6():35205. PubMed ID: 27748416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. circ-PRKCB acts as a ceRNA to regulate p66Shc-mediated oxidative stress in intestinal ischemia/reperfusion.
    Feng D; Wang Z; Zhao Y; Li Y; Liu D; Chen Z; Ning S; Hu Y; Yao J; Tian X
    Theranostics; 2020; 10(23):10680-10696. PubMed ID: 32929374
    [No Abstract]   [Full Text] [Related]  

  • 32. Histone H1 improves regeneration after mouse spinal cord injury and changes shape and gene expression of cultured astrocytes.
    Kleene R; Loers G; Jakovcevski I; Mishra B; Schachner M
    Restor Neurol Neurosci; 2019; 37(4):291-313. PubMed ID: 31227672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. p66Shc Contributes to Liver Fibrosis through the Regulation of Mitochondrial Reactive Oxygen Species.
    Zhao Y; Wang Z; Feng D; Zhao H; Lin M; Hu Y; Zhang N; Lv L; Gao Z; Zhai X; Tian X; Yao J
    Theranostics; 2019; 9(5):1510-1522. PubMed ID: 30867846
    [No Abstract]   [Full Text] [Related]  

  • 34. Overexpression of Rictor in the injured spinal cord promotes functional recovery in a rat model of spinal cord injury.
    Chen N; Zhou P; Liu X; Li J; Wan Y; Liu S; Wei F
    FASEB J; 2020 May; 34(5):6984-6998. PubMed ID: 32232913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Upregulation of TRESK Channels Contributes to Motor and Sensory Recovery after Spinal Cord Injury.
    Kim GT; Siregar AS; Kim EJ; Lee ES; Nyiramana MM; Woo MS; Hah YS; Han J; Kang D
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33256222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Lentiviral vector-mediated RNA interfere gene Nogo receptor to repair spinal cord injury].
    Lü BT; Yuan W; Xu SM
    Zhonghua Wai Ke Za Zhi; 2010 Oct; 48(20):1573-6. PubMed ID: 21176674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.
    Gaudet AD; Mandrekar-Colucci S; Hall JC; Sweet DR; Schmitt PJ; Xu X; Guan Z; Mo X; Guerau-de-Arellano M; Popovich PG
    J Neurosci; 2016 Aug; 36(32):8516-32. PubMed ID: 27511021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted Inhibition of Leucine-Rich Repeat and Immunoglobulin Domain-Containing Protein 1 in Transplanted Neural Stem Cells Promotes Neuronal Differentiation and Functional Recovery in Rats Subjected to Spinal Cord Injury.
    Chen N; Cen JS; Wang J; Qin G; Long L; Wang L; Wei F; Xiang Q; Deng DY; Wan Y
    Crit Care Med; 2016 Mar; 44(3):e146-57. PubMed ID: 26491860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trimethylene carbonate-caprolactone conduit with poly-p-dioxanone microfilaments to promote regeneration after spinal cord injury.
    Novikova LN; Kolar MK; Kingham PJ; Ullrich A; Oberhoffner S; Renardy M; Doser M; Müller E; Wiberg M; Novikov LN
    Acta Biomater; 2018 Jan; 66():177-191. PubMed ID: 29174588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The PKCβ-p66shc-NADPH oxidase pathway plays a crucial role in diabetic nephropathy.
    Cheng YS; Chao J; Chen C; Lv LL; Han YC; Liu BC
    J Pharm Pharmacol; 2019 Mar; 71(3):338-347. PubMed ID: 30417389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.