BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33629200)

  • 1. Coccolithophores: an environmentally significant and understudied phytoplankton group in the Indian Ocean.
    Arundhathy M; Jyothibabu R; Santhikrishnan S; Albin KJ; Parthasarathi S; Rashid CP
    Environ Monit Assess; 2021 Feb; 193(3):144. PubMed ID: 33629200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malformation in coccolithophores in low pH waters: evidences from the eastern Arabian Sea.
    Shetye S; Gazi S; Manglavil A; Shenoy D; Kurian S; Pratihary A; Shirodkar G; Mohan R; Dias A; Naik H; Gauns M; Nandakumar K; Borker S
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):42351-42366. PubMed ID: 36648723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced H
    Kottmeier DM; Chrachri A; Langer G; Helliwell KE; Wheeler GL; Brownlee C
    Proc Natl Acad Sci U S A; 2022 May; 119(19):e2118009119. PubMed ID: 35522711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification.
    Beaufort L; Probert I; de Garidel-Thoron T; Bendif EM; Ruiz-Pino D; Metzl N; Goyet C; Buchet N; Coupel P; Grelaud M; Rost B; Rickaby RE; de Vargas C
    Nature; 2011 Aug; 476(7358):80-3. PubMed ID: 21814280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores.
    Balch WM
    Ann Rev Mar Sci; 2018 Jan; 10():71-98. PubMed ID: 29298138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BEFORE OCEAN ACIDIFICATION: CALCIFIER CHEMISTRY LESSONS(1).
    Roleda MY; Boyd PW; Hurd CL
    J Phycol; 2012 Aug; 48(4):840-3. PubMed ID: 27008995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable isotope fractionation of strontium in coccolithophore calcite: Influence of temperature and carbonate chemistry.
    Müller MN; Krabbenhöft A; Vollstaedt H; Brandini FP; Eisenhauer A
    Geobiology; 2018 May; 16(3):297-306. PubMed ID: 29431278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic energy budget modeling reveals the potential of future growth and calcification for the coccolithophore Emiliania huxleyi in an acidified ocean.
    Muller EB; Nisbet RM
    Glob Chang Biol; 2014 Jun; 20(6):2031-8. PubMed ID: 24526588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO
    Tong S; Gao K; Hutchins DA
    Glob Chang Biol; 2018 Jul; 24(7):3055-3064. PubMed ID: 29356310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coccolithophore calcification: Changing paradigms in changing oceans.
    Brownlee C; Langer G; Wheeler GL
    Acta Biomater; 2021 Jan; 120():4-11. PubMed ID: 32763469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why marine phytoplankton calcify.
    Monteiro FM; Bach LT; Brownlee C; Bown P; Rickaby RE; Poulton AJ; Tyrrell T; Beaufort L; Dutkiewicz S; Gibbs S; Gutowska MA; Lee R; Riebesell U; Young J; Ridgwell A
    Sci Adv; 2016 Jul; 2(7):e1501822. PubMed ID: 27453937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification.
    Lohbeck KT; Riebesell U; Reusch TB
    Proc Biol Sci; 2014 Jul; 281(1786):. PubMed ID: 24827439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi.
    Feng Y; Roleda MY; Armstrong E; Summerfield TC; Law CS; Hurd CL; Boyd PW
    Glob Chang Biol; 2020 Oct; 26(10):5630-5645. PubMed ID: 32597547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal response pattern of phytoplankton growth rates to increasing CO
    Paul AJ; Bach LT
    New Phytol; 2020 Dec; 228(6):1710-1716. PubMed ID: 32654139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoplankton calcification in a high-CO2 world.
    Iglesias-Rodriguez MD; Halloran PR; Rickaby RE; Hall IR; Colmenero-Hidalgo E; Gittins JR; Green DR; Tyrrell T; Gibbs SJ; von Dassow P; Rehm E; Armbrust EV; Boessenkool KP
    Science; 2008 Apr; 320(5874):336-40. PubMed ID: 18420926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoplankton growth and community shift over a short-term high-CO
    Sharma D; Biswas H; Silori S; Bandyopadhyay D; Shaik AUR
    Environ Monit Assess; 2022 Jul; 194(8):581. PubMed ID: 35821440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coccolithophore calcification response to past ocean acidification and climate change.
    O'Dea SA; Gibbs SJ; Bown PR; Young JR; Poulton AJ; Newsam C; Wilson PA
    Nat Commun; 2014 Nov; 5():5363. PubMed ID: 25399967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ocean acidification on iron availability to marine phytoplankton.
    Shi D; Xu Y; Hopkinson BM; Morel FM
    Science; 2010 Feb; 327(5966):676-9. PubMed ID: 20075213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of oceanic subsurface chlorophyll maxima to environmental drivers in the Northern Indian Ocean.
    Garg S; Gauns M; Pratihary AK
    Environ Res; 2024 Jan; 240(Pt 1):117528. PubMed ID: 37898227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ocean Acidification Affects the Response of the Coastal Coccolithophore
    Wu F; Guo J; Duan H; Li T; Wang Y; Wang Y; Wang S; Feng Y
    Biology (Basel); 2023 Sep; 12(9):. PubMed ID: 37759648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.