BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 33629347)

  • 1. Extended 2D myotube culture recapitulates postnatal fibre type plasticity.
    Sebastian S; Goulding L; Kuchipudi SV; Chang KC
    BMC Cell Biol; 2015 Sep; 16():23. PubMed ID: 26382633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent characterization of differentiated myotubes using flow cytometry.
    Nolan A; Heaton RA; Adamova P; Cole P; Turton N; Gillham SH; Owens DJ; Sexton DW
    Cytometry A; 2024 May; 105(5):332-344. PubMed ID: 38092660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle.
    Khodabukus A; Madden L; Prabhu NK; Koves TR; Jackman CP; Muoio DM; Bursac N
    Biomaterials; 2019 Apr; 198():259-269. PubMed ID: 30180985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of Chicken Contractile Skeletal Muscle Structure Using Decellularized Plant Scaffolds.
    Hong TK; Do JT
    ACS Biomater Sci Eng; 2024 May; 10(5):3500-3512. PubMed ID: 38563398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications.
    Ostrovidov S; Hosseini V; Ahadian S; Fujie T; Parthiban SP; Ramalingam M; Bae H; Kaji H; Khademhosseini A
    Tissue Eng Part B Rev; 2014 Oct; 20(5):403-36. PubMed ID: 24320971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directional topography gradients drive optimum alignment and differentiation of human myoblasts.
    Almonacid Suarez AM; Zhou Q; van Rijn P; Harmsen MC
    J Tissue Eng Regen Med; 2019 Dec; 13(12):2234-2245. PubMed ID: 31677226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibroblasts influence muscle progenitor differentiation and alignment in contact independent and dependent manners in organized co-culture devices.
    Rao N; Evans S; Stewart D; Spencer KH; Sheikh F; Hui EE; Christman KL
    Biomed Microdevices; 2013 Feb; 15(1):161-9. PubMed ID: 22983793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of primary human skeletal muscle cells from multiple commercial sources.
    Owens J; Moreira K; Bain G
    In Vitro Cell Dev Biol Anim; 2013 Oct; 49(9):695-705. PubMed ID: 23860742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular self-organization by autocatalytic alignment feedback.
    Junkin M; Leung SL; Whitman S; Gregorio CC; Wong PK
    J Cell Sci; 2011 Dec; 124(Pt 24):4213-20. PubMed ID: 22193956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment.
    Skillin NP; Kirkpatrick BE; Herbert KM; Nelson BR; Hach GK; Günay KA; Khan RM; DelRio FW; White TJ; Anseth KS
    Sci Adv; 2024 May; 10(22):eadn0235. PubMed ID: 38820155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term microfluidic cultures of myotube microarrays for high-throughput focal stimulation.
    Tourovskaia A; Figueroa-Masot X; Folch A
    Nat Protoc; 2006; 1(3):1092-104. PubMed ID: 17406389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment.
    Skillin NP; Kirkpatrick BE; Herbert KM; Nelson BR; Hach GK; Günay KA; Khan RM; DelRio FW; White TJ; Anseth KS
    bioRxiv; 2023 Aug; ():. PubMed ID: 37609145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct cell surface modification with DNA for the capture of primary cells and the investigation of myotube formation on defined patterns.
    Hsiao SC; Shum BJ; Onoe H; Douglas ES; Gartner ZJ; Mathies RA; Bertozzi CR; Francis MB
    Langmuir; 2009 Jun; 25(12):6985-91. PubMed ID: 19505164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring the maturation of the sarcomere network: a super-resolution microscopy-based approach.
    Skorska A; Johann L; Chabanovska O; Vasudevan P; Kussauer S; Hillemanns M; Wolfien M; Jonitz-Heincke A; Wolkenhauer O; Bader R; Lang H; David R; Lemcke H
    Cell Mol Life Sci; 2022 Feb; 79(3):149. PubMed ID: 35199227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of topological constraints on the alignment and maturation of multinucleated myotubes.
    Song KY; Correia JC; Ruas JL; Teixeira AI
    Biotechnol Bioeng; 2021 Jun; 118(6):2234-2242. PubMed ID: 33629347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a clonal equine myoblast cell line capable of terminal differentiation into mature myotubes in vitro.
    Naylor RJ; Piercy RJ
    Am J Vet Res; 2015 Jul; 76(7):608-14. PubMed ID: 26111090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined substrate micropatterning and FFT analysis reveals myotube size control and alignment by contact guidance.
    Vajanthri KY; Sidu RK; Poddar S; Singh AK; Mahto SK
    Cytoskeleton (Hoboken); 2019 Mar; 76(3):269-285. PubMed ID: 31074945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of the Combinatorial Signaling of Transforming Growth Factor-Beta and NOTCH Promotes Myotube Formation of Human Pluripotent Stem Cell-Derived Skeletal Muscle Progenitor Cells.
    Choi IY; Lim HT; Che YH; Lee G; Kim YJ
    Cells; 2021 Jun; 10(7):. PubMed ID: 34209364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The regulation of myoblast plasticity and its mechanism.
    Zhang P; Chen XP
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2012 Nov; 28(6):524-31. PubMed ID: 23581181
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.