These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 33629522)

  • 1. Role of digestive protease enzymes and related genes in host plant adaptation of a polyphagous pest, Spodoptera frugiperda.
    Hafeez M; Li XW; Zhang JM; Zhang ZJ; Huang J; Wang LK; Khan MM; Shah S; Fernández-Grandon GM; Lu YB
    Insect Sci; 2021 Jun; 28(3):611-626. PubMed ID: 33629522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral and Physiological Plasticity Provides Insights into Molecular Based Adaptation Mechanism to Strain Shift in
    Hafeez M; Li X; Ullah F; Zhang Z; Zhang J; Huang J; Khan MM; Chen L; Ren X; Zhou S; Fernández-Grandon GM; Zalucki MP; Lu Y
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insensitive trypsins are differentially transcribed during Spodoptera frugiperda adaptation against plant protease inhibitors.
    de Oliveira CF; de Paula Souza T; Parra JR; Marangoni S; Silva-Filho Mde C; Macedo ML
    Comp Biochem Physiol B Biochem Mol Biol; 2013 May; 165(1):19-25. PubMed ID: 23466392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors.
    Paulillo LC; Lopes AR; Cristofoletti PT; Parra JR; Terra WR; Silva-Filho MC
    J Econ Entomol; 2000 Jun; 93(3):892-6. PubMed ID: 10902346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochrome P450s genes CYP321A9 and CYP9A58 contribute to host plant adaptation in the fall armyworm Spodoptera frugiperda.
    He L; Shi Y; Ding W; Huang H; He H; Xue J; Gao Q; Zhang Z; Li Y; Qiu L
    Pest Manag Sci; 2023 May; 79(5):1783-1790. PubMed ID: 36627818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General up regulation of Spodoptera frugiperda trypsins and chymotrypsins allows its adaptation to soybean proteinase inhibitor.
    Brioschi D; Nadalini LD; Bengtson MH; Sogayar MC; Moura DS; Silva-Filho MC
    Insect Biochem Mol Biol; 2007 Dec; 37(12):1283-90. PubMed ID: 17967347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the physiological, histopathological, and gene expression alterations in Spodoptera frugiperda larval midguts affected by toosendanin exposure.
    Lin Y; Huang Y; Liu J; Liu L; Cai X; Lin J; Shu B
    Pestic Biochem Physiol; 2023 Sep; 195():105537. PubMed ID: 37666609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda.
    Silva-Brandão KL; Horikoshi RJ; Bernardi D; Omoto C; Figueira A; Brandão MM
    BMC Genomics; 2017 Oct; 18(1):792. PubMed ID: 29037161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of expression profiling of the trypsin and chymotrypsin genes from Lepidoptera species with different levels of sensitivity to soybean peptidase inhibitors.
    Souza TP; Dias RO; Castelhano EC; Brandão MM; Moura DS; Silva-Filho MC
    Comp Biochem Physiol B Biochem Mol Biol; 2016; 196-197():67-73. PubMed ID: 26944308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges.
    Gouin A; Bretaudeau A; Nam K; Gimenez S; Aury JM; Duvic B; Hilliou F; Durand N; Montagné N; Darboux I; Kuwar S; Chertemps T; Siaussat D; Bretschneider A; Moné Y; Ahn SJ; Hänniger S; Grenet AG; Neunemann D; Maumus F; Luyten I; Labadie K; Xu W; Koutroumpa F; Escoubas JM; Llopis A; Maïbèche-Coisne M; Salasc F; Tomar A; Anderson AR; Khan SA; Dumas P; Orsucci M; Guy J; Belser C; Alberti A; Noel B; Couloux A; Mercier J; Nidelet S; Dubois E; Liu NY; Boulogne I; Mirabeau O; Le Goff G; Gordon K; Oakeshott J; Consoli FL; Volkoff AN; Fescemyer HW; Marden JH; Luthe DS; Herrero S; Heckel DG; Wincker P; Kergoat GJ; Amselem J; Quesneville H; Groot AT; Jacquin-Joly E; Nègre N; Lemaitre C; Legeai F; d'Alençon E; Fournier P
    Sci Rep; 2017 Sep; 7(1):11816. PubMed ID: 28947760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms behind polyphagia in a pest insect: Responses of Spodoptera frugiperda (J.E. Smith) strains to preferential and alternative larval host plants assessed with gene regulatory networks.
    Murad NF; Silva-Brandão KL; Brandão MM
    Biochim Biophys Acta Gene Regul Mech; 2021 Mar; 1864(3):194687. PubMed ID: 33561559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and expression profiling of microRNAs in response to plant feeding in two host-plant strains of the lepidopteran pest Spodoptera frugiperda.
    Moné Y; Nhim S; Gimenez S; Legeai F; Seninet I; Parrinello H; Nègre N; d'Alençon E
    BMC Genomics; 2018 Nov; 19(1):804. PubMed ID: 30400811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNAi-mediated knockdown of a Spodoptera frugiperda trypsin-like serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Ca1 protoxin.
    Rodríguez-Cabrera L; Trujillo-Bacallao D; Borrás-Hidalgo O; Wright DJ; Ayra-Pardo C
    Environ Microbiol; 2010 Nov; 12(11):2894-903. PubMed ID: 20545748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of carvacrol on development and gene expression profiles in Spodoptera frugiperda.
    Liu J; Lin Y; Huang Y; Liu L; Cai X; Lin J; Shu B
    Pestic Biochem Physiol; 2023 Sep; 195():105539. PubMed ID: 37666589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insecticide Susceptibility and Mechanism of
    Guo Z; Jin R; Guo Z; Cai T; Zhang Y; Gao J; Huang G; Wan H; He S; Xie Y; Li J; Ma K
    J Agric Food Chem; 2022 Sep; 70(36):11367-11376. PubMed ID: 36053555
    [No Abstract]   [Full Text] [Related]  

  • 16. An influential meal: host plant dependent transcriptional variation in the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae).
    Breeschoten T; Ros VID; Schranz ME; Simon S
    BMC Genomics; 2019 Nov; 20(1):845. PubMed ID: 31722664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-targeted metabolomics reveals differences in the gut metabolic profile of the fall armyworm strains when feeding different food sources.
    Oliveira NC; Phelan L; Labate CA; Cônsoli FL
    J Insect Physiol; 2022; 139():104400. PubMed ID: 35598778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cry1 Bt Susceptibilities of Fall Armyworm (Lepidoptera: Noctuidae) Host Strains.
    Ingber DA; Mason CE; Flexner L
    J Econ Entomol; 2018 Feb; 111(1):361-368. PubMed ID: 29240921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of cytochrome P450-mediated detoxification of tetraniliprole, spinetoram, and emamectin benzoate in the fall armyworm,
    Wang A; Zhang Y; Liu S; Xue C; Zhao Y; Zhao M; Yang Y; Zhang J
    Bull Entomol Res; 2024 Apr; 114(2):159-171. PubMed ID: 38563228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity of the Gene Transcriptional Level and Microbiota in the Gut Contributes to the Adaptability of the Fall Armyworm to Rice Plants.
    Han WK; Tang FX; Yan YY; Wang Y; Liu ZW
    J Agric Food Chem; 2023 Nov; 71(47):18546-18556. PubMed ID: 37963218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.