These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 33629527)
1. Comprehensive N-glycosylation analysis of the influenza A virus proteins HA and NA from adherent and suspension MDCK cells. Pralow A; Hoffmann M; Nguyen-Khuong T; Pioch M; Hennig R; Genzel Y; Rapp E; Reichl U FEBS J; 2021 Aug; 288(16):4869-4891. PubMed ID: 33629527 [TBL] [Abstract][Full Text] [Related]
2. N-Linked Glycan Sites on the Influenza A Virus Neuraminidase Head Domain Are Required for Efficient Viral Incorporation and Replication. Östbye H; Gao J; Martinez MR; Wang H; de Gier JW; Daniels R J Virol; 2020 Sep; 94(19):. PubMed ID: 32699088 [TBL] [Abstract][Full Text] [Related]
3. Impact of cultivation conditions on N-glycosylation of influenza virus a hemagglutinin produced in MDCK cell culture. Rödig JV; Rapp E; Bohne J; Kampe M; Kaffka H; Bock A; Genzel Y; Reichl U Biotechnol Bioeng; 2013 Jun; 110(6):1691-703. PubMed ID: 23297157 [TBL] [Abstract][Full Text] [Related]
4. N-Linked Glycosylation Plays an Important Role in Budding of Neuraminidase Protein and Virulence of Influenza Viruses. Bao D; Xue R; Zhang M; Lu C; Ma T; Ren C; Zhang T; Yang J; Teng Q; Li X; Li Z; Liu Q J Virol; 2021 Jan; 95(3):. PubMed ID: 33177197 [TBL] [Abstract][Full Text] [Related]
5. Comparison of N-linked glycosylation on hemagglutinins derived from chicken embryos and MDCK cells: a case of the production of a trivalent seasonal influenza vaccine. Li J; Liu S; Gao Y; Tian S; Yang Y; Ma N Appl Microbiol Biotechnol; 2021 May; 105(9):3559-3572. PubMed ID: 33937925 [TBL] [Abstract][Full Text] [Related]
6. Systematic evaluation of suspension MDCK cells, adherent MDCK cells, and LLC-MK2 cells for preparing influenza vaccine seed virus. Nakamura K; Harada Y; Takahashi H; Trusheim H; Bernhard R; Hamamoto I; Hirata-Saito A; Ogane T; Mizuta K; Konomi N; Konomi Y; Asanuma H; Odagiri T; Tashiro M; Yamamoto N Vaccine; 2019 Oct; 37(43):6526-6534. PubMed ID: 31500967 [TBL] [Abstract][Full Text] [Related]
7. Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. Wagner R; Wolff T; Herwig A; Pleschka S; Klenk HD J Virol; 2000 Jul; 74(14):6316-23. PubMed ID: 10864641 [TBL] [Abstract][Full Text] [Related]
8. Absolute quantification of viral proteins during single-round replication of MDCK suspension cells. Küchler J; Püttker S; Lahmann P; Genzel Y; Kupke S; Benndorf D; Reichl U J Proteomics; 2022 May; 259():104544. PubMed ID: 35240312 [TBL] [Abstract][Full Text] [Related]
9. Influenza Virus Hemagglutinins H2, H5, H6, and H11 Are Not Targets of Pulmonary Surfactant Protein D: Parsons LM; An Y; Qi L; White MR; van der Woude R; Hartshorn KL; Taubenberger JK; de Vries RP; Cipollo JF J Virol; 2020 Feb; 94(5):. PubMed ID: 31826991 [TBL] [Abstract][Full Text] [Related]
11. Influenza A virus hemagglutinin and neuraminidase act as novel motile machinery. Sakai T; Nishimura SI; Naito T; Saito M Sci Rep; 2017 Mar; 7():45043. PubMed ID: 28344335 [TBL] [Abstract][Full Text] [Related]
12. Mutations in Influenza A Virus Neuraminidase and Hemagglutinin Confer Resistance against a Broadly Neutralizing Hemagglutinin Stem Antibody. Prachanronarong KL; Canale AS; Liu P; Somasundaran M; Hou S; Poh YP; Han T; Zhu Q; Renzette N; Zeldovich KB; Kowalik TF; Kurt-Yilmaz N; Jensen JD; Bolon DNA; Marasco WA; Finberg RW; Schiffer CA; Wang JP J Virol; 2019 Jan; 93(2):. PubMed ID: 30381484 [TBL] [Abstract][Full Text] [Related]
13. Mutation of the second sialic acid-binding site of influenza A virus neuraminidase drives compensatory mutations in hemagglutinin. Du W; Wolfert MA; Peeters B; van Kuppeveld FJM; Boons GJ; de Vries E; de Haan CAM PLoS Pathog; 2020 Aug; 16(8):e1008816. PubMed ID: 32853241 [TBL] [Abstract][Full Text] [Related]
14. A release-competent influenza A virus mutant lacking the coding capacity for the neuraminidase active site. Gubareva LV; Nedyalkova MS; Novikov DV; Murti KG; Hoffmann E; Hayden FG J Gen Virol; 2002 Nov; 83(Pt 11):2683-2692. PubMed ID: 12388803 [TBL] [Abstract][Full Text] [Related]
15. Improving Statistical Certainty of Glycosylation Similarity between Influenza A Virus Variants Using Data-Independent Acquisition Mass Spectrometry. Chang D; Klein J; Hackett WE; Nalehua MR; Wan XF; Zaia J Mol Cell Proteomics; 2022 Nov; 21(11):100412. PubMed ID: 36103992 [TBL] [Abstract][Full Text] [Related]
16. Addition of glycosylation to influenza A virus hemagglutinin modulates antibody-mediated recognition of H1N1 2009 pandemic viruses. Job ER; Deng YM; Barfod KK; Tate MD; Caldwell N; Reddiex S; Maurer-Stroh S; Brooks AG; Reading PC J Immunol; 2013 Mar; 190(5):2169-77. PubMed ID: 23365085 [TBL] [Abstract][Full Text] [Related]
17. Neuraminidase activity and specificity of influenza A virus are influenced by haemagglutinin-receptor binding. Lai JCC; Karunarathna HMTK; Wong HH; Peiris JSM; Nicholls JM Emerg Microbes Infect; 2019; 8(1):327-338. PubMed ID: 30866786 [TBL] [Abstract][Full Text] [Related]
18. Influenza A surface glycosylation and vaccine design. Wu CY; Lin CW; Tsai TI; Lee CD; Chuang HY; Chen JB; Tsai MH; Chen BR; Lo PW; Liu CP; Shivatare VS; Wong CH Proc Natl Acad Sci U S A; 2017 Jan; 114(2):280-285. PubMed ID: 28028222 [TBL] [Abstract][Full Text] [Related]
19. Hemagglutinin-Neuraminidase Balance Influences the Virulence Phenotype of a Recombinant H5N3 Influenza A Virus Possessing a Polybasic HA0 Cleavage Site. Diederich S; Berhane Y; Embury-Hyatt C; Hisanaga T; Handel K; Cottam-Birt C; Ranadheera C; Kobasa D; Pasick J J Virol; 2015 Nov; 89(21):10724-34. PubMed ID: 26246579 [TBL] [Abstract][Full Text] [Related]
20. N-glycan analysis by CGE-LIF: profiling influenza A virus hemagglutinin N-glycosylation during vaccine production. Schwarzer J; Rapp E; Reichl U Electrophoresis; 2008 Nov; 29(20):4203-14. PubMed ID: 18925582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]