These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
558 related articles for article (PubMed ID: 33629670)
1. Characterization of the mechanical properties of van der Waals heterostructures of stanene adsorbed on graphene, hexagonal boron-nitride and silicon carbide. Rahman MH; Chowdhury EH; Redwan DA; Mitra S; Hong S Phys Chem Chem Phys; 2021 Mar; 23(9):5244-5253. PubMed ID: 33629670 [TBL] [Abstract][Full Text] [Related]
2. Phonon thermal conductivity of the stanene/hBN van der Waals heterostructure. Rahman MH; Islam MS; Islam MS; Chowdhury EH; Bose P; Jayan R; Islam MM Phys Chem Chem Phys; 2021 May; 23(18):11028-11038. PubMed ID: 33942827 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics. Kim KK; Lee HS; Lee YH Chem Soc Rev; 2018 Aug; 47(16):6342-6369. PubMed ID: 30043784 [TBL] [Abstract][Full Text] [Related]
4. Phonon transport in vacancy induced defective stanene/hBN van der Waals heterostructure. Hassan M; Das P; Paul P; Morshed AM; Paul TC Nanotechnology; 2024 Aug; 35(43):. PubMed ID: 39053488 [TBL] [Abstract][Full Text] [Related]
5. Influence of Proximity to Supporting Substrate on van der Waals Epitaxy of Atomically Thin Graphene/Hexagonal Boron Nitride Heterostructures. Heilmann M; Prikhodko AS; Hanke M; Sabelfeld A; Borgardt NI; Lopes JMJ ACS Appl Mater Interfaces; 2020 Feb; 12(7):8897-8907. PubMed ID: 31971775 [TBL] [Abstract][Full Text] [Related]
6. Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. Yang Y; Ma J; Yang J; Zhang Y ACS Appl Mater Interfaces; 2022 Oct; 14(40):45742-45751. PubMed ID: 36172714 [TBL] [Abstract][Full Text] [Related]
7. Bubble-Free Transfer Technique for High-Quality Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. Iwasaki T; Endo K; Watanabe E; Tsuya D; Morita Y; Nakaharai S; Noguchi Y; Wakayama Y; Watanabe K; Taniguchi T; Moriyama S ACS Appl Mater Interfaces; 2020 Feb; 12(7):8533-8538. PubMed ID: 32027115 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of AAB-Stacked Single-Crystal Graphene/hBN/Graphene Trilayer van der Waals Heterostructures by In Situ CVD. Tian B; Li J; Chen M; Dong H; Zhang X Adv Sci (Weinh); 2022 Jul; 9(21):e2201324. PubMed ID: 35618473 [TBL] [Abstract][Full Text] [Related]
9. Effect of misfit strain on the buckling of graphene/MoS Zhang RS; Jiang JW Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 34412042 [TBL] [Abstract][Full Text] [Related]
10. Phonon Thermal Transport across Multilayer Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. Wu X; Han Q ACS Appl Mater Interfaces; 2021 Jul; 13(27):32564-32578. PubMed ID: 34196535 [TBL] [Abstract][Full Text] [Related]
11. Probing the chirality-dependent elastic properties and crack propagation behavior of single and bilayer stanene. Mahata A; Mukhopadhyay T Phys Chem Chem Phys; 2018 Sep; 20(35):22768-22782. PubMed ID: 30140834 [TBL] [Abstract][Full Text] [Related]
12. Toward an Understanding of the Electric Field-Induced Electrostatic Doping in van der Waals Heterostructures: A First-Principles Study. Lu AK; Houssa M; Radu IP; Pourtois G ACS Appl Mater Interfaces; 2017 Mar; 9(8):7725-7734. PubMed ID: 28192656 [TBL] [Abstract][Full Text] [Related]
13. Wide field imaging of van der Waals ferromagnet Fe Huang M; Zhou J; Chen D; Lu H; McLaughlin NJ; Li S; Alghamdi M; Djugba D; Shi J; Wang H; Du CR Nat Commun; 2022 Sep; 13(1):5369. PubMed ID: 36100604 [TBL] [Abstract][Full Text] [Related]
14. Novel Van Der Waals Heterostructures Based on Borophene, Graphene-like GaN and ZnO for Nanoelectronics: A First Principles Study. Slepchenkov MM; Kolosov DA; Glukhova OE Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744141 [TBL] [Abstract][Full Text] [Related]
15. Electronic structure, optical and photocatalytic performance of SiC-MX Din HU; Idrees M; Rehman G; Nguyen CV; Gan LY; Ahmad I; Maqbool M; Amin B Phys Chem Chem Phys; 2018 Oct; 20(37):24168-24175. PubMed ID: 30207335 [TBL] [Abstract][Full Text] [Related]
16. Electrochemistry at the Edge of a van der Waals Heterostructure. Plačkić A; Neubert TJ; Patel K; Kuhl M; Watanabe K; Taniguchi T; Zurutuza A; Sordan R; Balasubramanian K Small; 2024 May; 20(21):e2306361. PubMed ID: 38109121 [TBL] [Abstract][Full Text] [Related]
17. Piezoelectricity in Monolayer Hexagonal Boron Nitride. Ares P; Cea T; Holwill M; Wang YB; Roldán R; Guinea F; Andreeva DV; Fumagalli L; Novoselov KS; Woods CR Adv Mater; 2020 Jan; 32(1):e1905504. PubMed ID: 31736228 [TBL] [Abstract][Full Text] [Related]
18. Band Gap Opening in Borophene/GaN and Borophene/ZnO Van der Waals Heterostructures Using Axial Deformation: First-Principles Study. Slepchenkov MM; Kolosov DA; Nefedov IS; Glukhova OE Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556727 [TBL] [Abstract][Full Text] [Related]
19. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy. Zuo Z; Xu Z; Zheng R; Khanaki A; Zheng JG; Liu J Sci Rep; 2015 Oct; 5():14760. PubMed ID: 26442629 [TBL] [Abstract][Full Text] [Related]
20. Advancements and Challenges in the Integration of Indium Arsenide and Van der Waals Heterostructures. Cheng T; Meng Y; Luo M; Xian J; Luo W; Wang W; Yue F; Ho JC; Yu C; Chu J Small; 2024 Nov; 20(48):e2403129. PubMed ID: 39030967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]