BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33629808)

  • 1. Butyrate production in the acetogen Eubacterium limosum is dependent on the carbon and energy source.
    Litty D; Müller V
    Microb Biotechnol; 2021 Nov; 14(6):2686-2692. PubMed ID: 33629808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetate-assisted increase of butyrate production by Eubacterium limosum KIST612 during carbon monoxide fermentation.
    Park S; Yasin M; Jeong J; Cha M; Kang H; Jang N; Choi IG; Chang IS
    Bioresour Technol; 2017 Dec; 245(Pt A):560-566. PubMed ID: 28898856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy Conservation Model Based on Genomic and Experimental Analyses of a Carbon Monoxide-Utilizing, Butyrate-Forming Acetogen, Eubacterium limosum KIST612.
    Jeong J; Bertsch J; Hess V; Choi S; Choi IG; Chang IS; Müller V
    Appl Environ Microbiol; 2015 Jul; 81(14):4782-90. PubMed ID: 25956767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refining and illuminating acetogenic Eubacterium strains for reclassification and metabolic engineering.
    Flaiz M; Poehlein A; Wilhelm W; Mook A; Daniel R; Dürre P; Bengelsdorf FR
    Microb Cell Fact; 2024 Jan; 23(1):24. PubMed ID: 38233843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of butyrate from methanol and carbon monoxide by recombinant Acetobacterium woodii.
    Chowdhury NP; Litty D; Müller V
    Int Microbiol; 2022 Aug; 25(3):551-560. PubMed ID: 35179672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High methanol-to-formate ratios induce butanol production in Eubacterium limosum.
    Wood JC; Marcellin E; Plan MR; Virdis B
    Microb Biotechnol; 2022 May; 15(5):1542-1549. PubMed ID: 34841673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete genome sequence of a carbon monoxide-utilizing acetogen, Eubacterium limosum KIST612.
    Roh H; Ko HJ; Kim D; Choi DG; Park S; Kim S; Chang IS; Choi IG
    J Bacteriol; 2011 Jan; 193(1):307-8. PubMed ID: 21036996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishing
    Humphreys JR; Hebdon SD; Rohrer H; Magnusson L; Urban C; Chen YP; Lo J
    Appl Environ Microbiol; 2022 Mar; 88(6):e0239321. PubMed ID: 35138930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species.
    Genthner BR; Davis CL; Bryant MP
    Appl Environ Microbiol; 1981 Jul; 42(1):12-9. PubMed ID: 6791591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii.
    Sharak Genthner BR; Bryant MP
    Appl Environ Microbiol; 1987 Mar; 53(3):471-6. PubMed ID: 3579266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methanol supply speeds up synthesis gas fermentation by methylotrophic-acetogenic bacterium, Eubacterium limosum KIST612.
    Kim JY; Park S; Jeong J; Lee M; Kang B; Jang SH; Jeon J; Jang N; Oh S; Park ZY; Chang IS
    Bioresour Technol; 2021 Feb; 321():124521. PubMed ID: 33321298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methanol as a co-substrate with CO
    Yao H; Rinta-Kanto JM; Vassilev I; Kokko M
    Appl Microbiol Biotechnol; 2024 Jun; 108(1):372. PubMed ID: 38874789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-carbon catabolism in acetogens: analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13C nuclear magnetic resonance measurement.
    Kerby R; Niemczura W; Zeikus JG
    J Bacteriol; 1983 Sep; 155(3):1208-18. PubMed ID: 6411684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of acetogen formatotrophic potential using Eubacterium limosum.
    Wood JC; Gonzalez-Garcia RA; Daygon D; Talbo G; Plan MR; Marcellin E; Virdis B
    Appl Microbiol Biotechnol; 2023 Jul; 107(14):4507-4518. PubMed ID: 37272938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemistry of methanol-dependent acetogenesis in Eubacterium callanderi KIST612.
    Dietrich HM; Kremp F; Öppinger C; Ribaric L; Müller V
    Environ Microbiol; 2021 Aug; 23(8):4505-4517. PubMed ID: 34125457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic biodegradation of methyl esters by Acetobacterium woodii and Eubacterium limosum.
    Liu S; Suflita JM
    J Ind Microbiol; 1994 Sep; 13(5):321-7. PubMed ID: 7765371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum.
    Lynd LH; Zeikus JG
    J Bacteriol; 1983 Mar; 153(3):1415-23. PubMed ID: 6402496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-passive mechanism of butyrate excretion operates during acidogenic fermentation of methanol by Eubacterium limosum.
    Loubiere P; Goma G; Lindley ND
    Antonie Van Leeuwenhoek; 1990 Feb; 57(2):83-9. PubMed ID: 2321932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic metabolic modelling predicts efficient acetogen-gut bacterium cocultures for CO-to-butyrate conversion.
    Li X; Henson MA
    J Appl Microbiol; 2021 Dec; 131(6):2899-2917. PubMed ID: 34008274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of the biocommodities butanol and acetone from methanol with fluorescent FAST-tagged proteins using metabolically engineered strains of Eubacterium limosum.
    Flaiz M; Ludwig G; Bengelsdorf FR; Dürre P
    Biotechnol Biofuels; 2021 May; 14(1):117. PubMed ID: 33971948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.