These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 33629839)
1. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning. Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839 [TBL] [Abstract][Full Text] [Related]
2. Multitask deep learning with dynamic task balancing for quantum mechanical properties prediction. Yang Z; Zhong W; Lv Q; Chen CY Phys Chem Chem Phys; 2022 Mar; 24(9):5383-5393. PubMed ID: 35169821 [TBL] [Abstract][Full Text] [Related]
3. Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network. Selvaratnam B; Koodali RT; Miró P J Chem Inf Model; 2020 Apr; 60(4):1928-1935. PubMed ID: 32053367 [TBL] [Abstract][Full Text] [Related]
4. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Smith JS; Nebgen BT; Zubatyuk R; Lubbers N; Devereux C; Barros K; Tretiak S; Isayev O; Roitberg AE Nat Commun; 2019 Jul; 10(1):2903. PubMed ID: 31263102 [TBL] [Abstract][Full Text] [Related]
5. Comparing ANI-2x, ANI-1ccx neural networks, force field, and DFT methods for predicting conformational potential energy of organic molecules. Rezaee M; Ekrami S; Hashemianzadeh SM Sci Rep; 2024 May; 14(1):11791. PubMed ID: 38783010 [TBL] [Abstract][Full Text] [Related]
6. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error. Faber FA; Hutchison L; Huang B; Gilmer J; Schoenholz SS; Dahl GE; Vinyals O; Kearnes S; Riley PF; von Lilienfeld OA J Chem Theory Comput; 2017 Nov; 13(11):5255-5264. PubMed ID: 28926232 [TBL] [Abstract][Full Text] [Related]
7. Relating molecular descriptors to frontier orbital energy levels, singlet and triplet excited states of fused tricyclics using machine learning. Woon KL; Chong ZX; Ariffin A; Chan CS J Mol Graph Model; 2021 Jun; 105():107891. PubMed ID: 33765526 [TBL] [Abstract][Full Text] [Related]
8. Deep Learning Total Energies and Orbital Energies of Large Organic Molecules Using Hybridization of Molecular Fingerprints. Rahaman O; Gagliardi A J Chem Inf Model; 2020 Dec; 60(12):5971-5983. PubMed ID: 33118351 [TBL] [Abstract][Full Text] [Related]
9. PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges. Unke OT; Meuwly M J Chem Theory Comput; 2019 Jun; 15(6):3678-3693. PubMed ID: 31042390 [TBL] [Abstract][Full Text] [Related]
10. Comparison Study on the Prediction of Multiple Molecular Properties by Various Neural Networks. Hou F; Wu Z; Hu Z; Xiao Z; Wang L; Zhang X; Li G J Phys Chem A; 2018 Nov; 122(46):9128-9134. PubMed ID: 30285444 [TBL] [Abstract][Full Text] [Related]
11. Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries. Allam O; Cho BW; Kim KC; Jang SS RSC Adv; 2018 Nov; 8(69):39414-39420. PubMed ID: 35558035 [TBL] [Abstract][Full Text] [Related]
12. The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules. Smith JS; Zubatyuk R; Nebgen B; Lubbers N; Barros K; Roitberg AE; Isayev O; Tretiak S Sci Data; 2020 May; 7(1):134. PubMed ID: 32358545 [TBL] [Abstract][Full Text] [Related]
13. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space. Hansen K; Biegler F; Ramakrishnan R; Pronobis W; von Lilienfeld OA; Müller KR; Tkatchenko A J Phys Chem Lett; 2015 Jun; 6(12):2326-31. PubMed ID: 26113956 [TBL] [Abstract][Full Text] [Related]
14. A Multitask Approach to Learn Molecular Properties. Tan Z; Li Y; Shi W; Yang S J Chem Inf Model; 2021 Aug; 61(8):3824-3834. PubMed ID: 34289687 [TBL] [Abstract][Full Text] [Related]
15. A shared-weight neural network architecture for predicting molecular properties. Profitt TA; Pearson JK Phys Chem Chem Phys; 2019 Dec; 21(47):26175-26183. PubMed ID: 31750845 [TBL] [Abstract][Full Text] [Related]
16. Prediction of Energetic Material Properties from Electronic Structure Using 3D Convolutional Neural Networks. Casey AD; Son SF; Bilionis I; Barnes BC J Chem Inf Model; 2020 Oct; 60(10):4457-4473. PubMed ID: 33054184 [TBL] [Abstract][Full Text] [Related]
17. Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks. Tsubaki M; Mizoguchi T J Phys Chem Lett; 2018 Oct; 9(19):5733-5741. PubMed ID: 30081630 [TBL] [Abstract][Full Text] [Related]
18. Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence. Zubatiuk T; Isayev O Acc Chem Res; 2021 Apr; 54(7):1575-1585. PubMed ID: 33715355 [TBL] [Abstract][Full Text] [Related]
19. Molecular dipole moment learning via rotationally equivariant derivative kernels in molecular-orbital-based machine learning. Sun J; Cheng L; Miller TF J Chem Phys; 2022 Sep; 157(10):104109. PubMed ID: 36109219 [TBL] [Abstract][Full Text] [Related]
20. Exploring Deep Learning of Quantum Chemical Properties for Absorption, Distribution, Metabolism, and Excretion Predictions. Lim MA; Yang S; Mai H; Cheng AC J Chem Inf Model; 2022 Dec; 62(24):6336-6341. PubMed ID: 35758421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]