These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 33630129)
1. New insights into the response of maize to fluctuations in the light environment. Qu J; Gou X; Zhang W; Li T; Xue J; Guo D; Xu S Mol Genet Genomics; 2021 May; 296(3):615-629. PubMed ID: 33630129 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptomics method to infer gene coexpression networks and its applications to maize and rice leaf transcriptomes. Chang YM; Lin HH; Liu WY; Yu CP; Chen HJ; Wartini PP; Kao YY; Wu YH; Lin JJ; Lu MJ; Tu SL; Wu SH; Shiu SH; Ku MSB; Li WH Proc Natl Acad Sci U S A; 2019 Feb; 116(8):3091-3099. PubMed ID: 30718437 [TBL] [Abstract][Full Text] [Related]
3. Loss or retention of chloroplast DNA in maize seedlings is affected by both light and genotype. Oldenburg DJ; Rowan BA; Zhao L; Walcher CL; Schleh M; Bendich AJ Planta; 2006 Dec; 225(1):41-55. PubMed ID: 16941116 [TBL] [Abstract][Full Text] [Related]
4. A Comprehensive Transcriptomics Analysis Reveals Long Non-Coding RNA to be Involved in the Key Metabolic Pathway in Response to Waterlogging Stress in Maize. Yu F; Tan Z; Fang T; Tang K; Liang K; Qiu F Genes (Basel); 2020 Feb; 11(3):. PubMed ID: 32121334 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome and Metabolomic Analyses Reveal Regulatory Networks Controlling Maize Stomatal Development in Response to Blue Light. Liu T; Zhang X Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065495 [TBL] [Abstract][Full Text] [Related]
6. EMB-7L is required for embryogenesis and plant development in maize involved in RNA splicing of multiple chloroplast genes. Yuan N; Wang J; Zhou Y; An D; Xiao Q; Wang W; Wu Y Plant Sci; 2019 Oct; 287():110203. PubMed ID: 31481208 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome analysis of a novel maize Fan Z; Kong M; Ma L; Duan S; Gao N; Xuqing C; Yongsheng T Plant Signal Behav; 2020 Aug; 15(8):1777374. PubMed ID: 32538297 [TBL] [Abstract][Full Text] [Related]
8. Regulatory modules controlling early shade avoidance response in maize seedlings. Wang H; Wu G; Zhao B; Wang B; Lang Z; Zhang C; Wang H BMC Genomics; 2016 Mar; 17():269. PubMed ID: 27030359 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352 [TBL] [Abstract][Full Text] [Related]
10. Reshaping of the maize transcriptome by domestication. Swanson-Wagner R; Briskine R; Schaefer R; Hufford MB; Ross-Ibarra J; Myers CL; Tiffin P; Springer NM Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11878-83. PubMed ID: 22753482 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize. Chotewutmontri P; Barkan A PLoS Genet; 2016 Jul; 12(7):e1006106. PubMed ID: 27414025 [TBL] [Abstract][Full Text] [Related]
12. Maize ANT1 modulates vascular development, chloroplast development, photosynthesis, and plant growth. Liu WY; Lin HH; Yu CP; Chang CK; Chen HJ; Lin JJ; Lu MJ; Tu SL; Shiu SH; Wu SH; Ku MSB; Li WH Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21747-21756. PubMed ID: 32817425 [No Abstract] [Full Text] [Related]
13. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses. Li Y; Wang X; Li Y; Zhang Y; Gou Z; Qi X; Zhang J Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32756433 [TBL] [Abstract][Full Text] [Related]
14. A spatiotemporal transcriptomic network dynamically modulates stalk development in maize. Le L; Guo W; Du D; Zhang X; Wang W; Yu J; Wang H; Qiao H; Zhang C; Pu L Plant Biotechnol J; 2022 Dec; 20(12):2313-2331. PubMed ID: 36070002 [TBL] [Abstract][Full Text] [Related]
15. An Exon Skipping in Wang M; Li K; Li Y; Mi L; Hu Z; Guo S; Song CP; Duan Z Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639010 [TBL] [Abstract][Full Text] [Related]
16. Physiological and transcriptome analyses of photosynthesis and chlorophyll metabolism in variegated Citrus (Shiranuhi and Huangguogan) seedlings. Xiong B; Qiu X; Huang S; Wang X; Zhang X; Dong T; Wang T; Li S; Sun G; Zhu J; Wang Z Sci Rep; 2019 Oct; 9(1):15670. PubMed ID: 31666652 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide transcriptome and proteome profiles indicate an active role of alternative splicing during de-etiolation of maize seedlings. Yan Z; Shen Z; Li Z; Chao Q; Kong L; Gao ZF; Li QW; Zheng HY; Zhao CF; Lu CM; Wang YW; Wang BC Planta; 2020 Sep; 252(4):60. PubMed ID: 32964359 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome analysis for identifying possible gene regulations during maize root emergence and formation at the initial growth stage. Hwang SG; Kim KH; Lee BM; Moon JC Genes Genomics; 2018 Jul; 40(7):755-766. PubMed ID: 29934814 [TBL] [Abstract][Full Text] [Related]
19. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome analysis of a new maize albino mutant reveals that zeta-carotene desaturase is involved in chloroplast development and retrograde signaling. Wang M; Zhu X; Li Y; Xia Z Plant Physiol Biochem; 2020 Nov; 156():407-419. PubMed ID: 33010551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]