These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33630584)

  • 1. Water-Gas Shift Reaction to Capture Carbon Dioxide and Separate Hydrogen on Single-Walled Carbon Nanotubes.
    Peng X; Vicent-Luna JM; Jin Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11026-11038. PubMed ID: 33630584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the adsorptive selectivity of carbon nanotubes for effective separation of CO₂/N₂ mixtures.
    Razavi SS; Hashemianzadeh SM; Karimi H
    J Mol Model; 2011 May; 17(5):1163-72. PubMed ID: 20694736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Impure Gas on CO
    Su Y; Liu S; Gao X
    Molecules; 2022 Mar; 27(5):. PubMed ID: 35268729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide conversion via reverse water-gas shift reaction: Reactor design.
    Santos MF; Bresciani AE; Ferreira NL; Bassani GS; Alves RMB
    J Environ Manage; 2023 Nov; 345():118822. PubMed ID: 37597369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Dioxide Capture from Biomass Pyrolysis Gas as an Enabling Step of Biogenic Carbon Nanotube Synthesis and Hydrogen Recovery.
    Veksha A; Lu J; Tsakadze Z; Lisak G
    ChemSusChem; 2023 Jul; 16(13):e202300143. PubMed ID: 37055348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amine-Containing Membranes with Functionalized Multi-Walled Carbon Nanotubes for CO
    Yang Y; Han Y; Pang R; Ho WSW
    Membranes (Basel); 2020 Nov; 10(11):. PubMed ID: 33182655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutual Diffusivities of Mixtures of Carbon Dioxide and Hydrogen and Their Solubilities in Brine: Insight from Molecular Simulations.
    Hulikal Chakrapani T; Hajibeygi H; Moultos OA; Vlugt TJH
    Ind Eng Chem Res; 2024 Jun; 63(23):10456-10481. PubMed ID: 38882502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.
    White CM; Strazisar BR; Granite EJ; Hoffman JS; Pennline HW;
    J Air Waste Manag Assoc; 2003 Jun; 53(6):645-715. PubMed ID: 12828330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Study on the Storage of Carbon Dioxide in Single-Walled Carbon Nanotubes at Low Pressures.
    Mi S; Zhang Y; Ge W
    Langmuir; 2024 Oct; 40(41):21855-21865. PubMed ID: 39348316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.
    Kowalczyk P; Gauden PA; Terzyk AP
    J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capture of trace sulfur gases from binary mixtures by single-walled carbon nanotube arrays: a molecular simulation study.
    Wang W; Peng X; Cao D
    Environ Sci Technol; 2011 Jun; 45(11):4832-8. PubMed ID: 21563793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of dry water- and porous carbon-based sorbents for carbon dioxide capture.
    Al-Wabel M; Elfaki J; Usman A; Hussain Q; Ok YS
    Environ Res; 2019 Jul; 174():69-79. PubMed ID: 31054524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Carbon Dioxide Capture and Release with a Redox-Active Amine.
    Seo H; Rahimi M; Hatton TA
    J Am Chem Soc; 2022 Feb; 144(5):2164-2170. PubMed ID: 35020393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO Separation from H
    Zhao W; Francisco JS; Zeng XC
    J Phys Chem Lett; 2016 Dec; 7(23):4911-4915. PubMed ID: 27934039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress in the Integration of CO
    Ning H; Li Y; Zhang C
    Molecules; 2023 Jun; 28(11):. PubMed ID: 37298975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Anwar MN; Fayyaz A; Sohail NF; Khokhar MF; Baqar M; Khan WD; Rasool K; Rehan M; Nizami AS
    J Environ Manage; 2018 Nov; 226():131-144. PubMed ID: 30114572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A windowed carbon nanotube membrane for CO
    Miao F; Jiang H
    RSC Adv; 2022 Jun; 12(26):16604-16614. PubMed ID: 35754878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Performant Design of Carbon-Based Nanomotors for Hydrogen Separation through Molecular Dynamics Simulations.
    Muraru S; Ionita M
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33339237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct gas-solid carbonation of serpentinite residues in the absence and presence of water vapor: a feasibility study for carbon dioxide sequestration.
    Veetil SP; Pasquier LC; Blais JF; Cecchi E; Kentish S; Mercier G
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13486-95. PubMed ID: 25940479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and diffusion of sulfur dioxide and nitrogen in single-wall carbon nanotubes.
    Hu Z; Xie H; Wang Q; Chen S
    J Mol Graph Model; 2019 May; 88():62-70. PubMed ID: 30660984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.