These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33630611)

  • 1. Evaluation of Thermochemical Machine Learning for Potential Energy Curves and Geometry Optimization.
    Folmsbee DL; Koes DR; Hutchison GR
    J Phys Chem A; 2021 Mar; 125(9):1987-1993. PubMed ID: 33630611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing ANI-2x, ANI-1ccx neural networks, force field, and DFT methods for predicting conformational potential energy of organic molecules.
    Rezaee M; Ekrami S; Hashemianzadeh SM
    Sci Rep; 2024 May; 14(1):11791. PubMed ID: 38783010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Evaluation of Geometry Optimization Algorithms in Conjunction with ANI Potentials.
    Hao D; He X; Roitberg AE; Zhang S; Wang J
    J Chem Theory Comput; 2022 Feb; 18(2):978-991. PubMed ID: 35020396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum-Chemically Informed Machine Learning: Prediction of Energies of Organic Molecules with 10 to 14 Non-hydrogen Atoms.
    Dandu N; Ward L; Assary RS; Redfern PC; Narayanan B; Foster IT; Curtiss LA
    J Phys Chem A; 2020 Jul; 124(28):5804-5811. PubMed ID: 32539388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network.
    Lu J; Wang C; Zhang Y
    J Chem Theory Comput; 2019 Jul; 15(7):4113-4121. PubMed ID: 31142110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BAND NN: A Deep Learning Framework for Energy Prediction and Geometry Optimization of Organic Small Molecules.
    Laghuvarapu S; Pathak Y; Priyakumar UD
    J Comput Chem; 2020 Mar; 41(8):790-799. PubMed ID: 31845368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modern semiempirical electronic structure methods and machine learning potentials for drug discovery: Conformers, tautomers, and protonation states.
    Zeng J; Tao Y; Giese TJ; York DM
    J Chem Phys; 2023 Mar; 158(12):124110. PubMed ID: 37003741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QDπ: A Quantum Deep Potential Interaction Model for Drug Discovery.
    Zeng J; Tao Y; Giese TJ; York DM
    J Chem Theory Comput; 2023 Feb; 19(4):1261-1275. PubMed ID: 36696673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens.
    Devereux C; Smith JS; Huddleston KK; Barros K; Zubatyuk R; Isayev O; Roitberg AE
    J Chem Theory Comput; 2020 Jul; 16(7):4192-4202. PubMed ID: 32543858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Low-Cost Quantum Chemistry Procedures for Geometry Optimization and Vibrational Frequency Calculations: Determination of Frequency Scale Factors and Application to Reactions of Large Systems.
    Chan B
    J Chem Theory Comput; 2017 Dec; 13(12):6052-6060. PubMed ID: 29116781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermochemical analysis and kinetics aspects for a chemical model for camphene ozonolysis.
    Oliveira RC; Bauerfeldt GF
    J Chem Phys; 2012 Oct; 137(13):134306. PubMed ID: 23039598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach.
    Ramakrishnan R; Dral PO; Rupp M; von Lilienfeld OA
    J Chem Theory Comput; 2015 May; 11(5):2087-96. PubMed ID: 26574412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MolE8: finding DFT potential energy surface minima values from force-field optimised organic molecules with new machine learning representations.
    Lee S; Ermanis K; Goodman JM
    Chem Sci; 2022 Jun; 13(24):7204-7214. PubMed ID: 35799803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OrbNet Denali: A machine learning potential for biological and organic chemistry with semi-empirical cost and DFT accuracy.
    Christensen AS; Sirumalla SK; Qiao Z; O'Connor MB; Smith DGA; Ding F; Bygrave PJ; Anandkumar A; Welborn M; Manby FR; Miller TF
    J Chem Phys; 2021 Nov; 155(20):204103. PubMed ID: 34852495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometry Optimization with Machine Trained Topological Atoms.
    Zielinski F; Maxwell PI; Fletcher TL; Davie SJ; Di Pasquale N; Cardamone S; Mills MJL; Popelier PLA
    Sci Rep; 2017 Oct; 7(1):12817. PubMed ID: 28993674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmark Study of the Structural and Thermochemical Properties of a Dihydroazulene/Vinylheptafulvene Photoswitch.
    Koerstz M; Elm J; Mikkelsen KV
    J Phys Chem A; 2017 Apr; 121(16):3148-3154. PubMed ID: 28350172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling pyranose ring pucker in carbohydrates using machine learning and semi-empirical quantum chemical methods.
    Kong L; Bryce RA
    J Comput Chem; 2022 Nov; 43(30):2009-2022. PubMed ID: 36165294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmark study on deep neural network potentials for small organic molecules.
    Modee R; Laghuvarapu S; Priyakumar UD
    J Comput Chem; 2022 Feb; 43(5):308-318. PubMed ID: 34870332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FCHL revisited: Faster and more accurate quantum machine learning.
    Christensen AS; Bratholm LA; Faber FA; Anatole von Lilienfeld O
    J Chem Phys; 2020 Jan; 152(4):044107. PubMed ID: 32007071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.