These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 33630611)
21. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
22. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH. Kolmann SJ; Jordan MJ J Chem Phys; 2010 Feb; 132(5):054105. PubMed ID: 20136303 [TBL] [Abstract][Full Text] [Related]
23. Neural network atomistic potentials for global energy minima search in carbon clusters. Tkachenko NV; Tkachenko AA; Nebgen B; Tretiak S; Boldyrev AI Phys Chem Chem Phys; 2023 Aug; 25(32):21173-21182. PubMed ID: 37490276 [TBL] [Abstract][Full Text] [Related]
24. Energies, Geometries, and Charge Distributions of Zn Molecules, Clusters, and Biocenters from Coupled Cluster, Density Functional, and Neglect of Diatomic Differential Overlap Models. Sorkin A; Truhlar DG; Amin EA J Chem Theory Comput; 2009 May; 5(5):1254-65. PubMed ID: 26609716 [TBL] [Abstract][Full Text] [Related]
32. Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence. Zubatiuk T; Isayev O Acc Chem Res; 2021 Apr; 54(7):1575-1585. PubMed ID: 33715355 [TBL] [Abstract][Full Text] [Related]
33. Accurate Many-Body Repulsive Potentials for Density-Functional Tight Binding from Deep Tensor Neural Networks. Stöhr M; Medrano Sandonas L; Tkatchenko A J Phys Chem Lett; 2020 Aug; 11(16):6835-6843. PubMed ID: 32787209 [TBL] [Abstract][Full Text] [Related]
34. Impact of the Characteristics of Quantum Chemical Databases on Machine Learning Prediction of Tautomerization Energies. Vazquez-Salazar LI; Boittier ED; Unke OT; Meuwly M J Chem Theory Comput; 2021 Aug; 17(8):4769-4785. PubMed ID: 34288675 [TBL] [Abstract][Full Text] [Related]
35. Learning transferable features in deep convolutional neural networks for diagnosing unseen machine conditions. Han T; Liu C; Yang W; Jiang D ISA Trans; 2019 Oct; 93():341-353. PubMed ID: 30935654 [TBL] [Abstract][Full Text] [Related]
36. Ab initio calculation of inner-sphere reorganization energies of arenediazonium ion couples. Weaver MN; Janicki SZ; Petillo PA J Org Chem; 2001 Feb; 66(4):1138-45. PubMed ID: 11312940 [TBL] [Abstract][Full Text] [Related]
37. Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data. Wang Z; Hu M; Zhai G Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642454 [TBL] [Abstract][Full Text] [Related]
38. Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H2O)16 and (H2O)17 to CCSD(T) Results. Leverentz HR; Qi HW; Truhlar DG J Chem Theory Comput; 2013 Feb; 9(2):995-1006. PubMed ID: 26588742 [TBL] [Abstract][Full Text] [Related]
39. A look inside the black box: Using graph-theoretical descriptors to interpret a Continuous-Filter Convolutional Neural Network (CF-CNN) trained on the global and local minimum energy structures of neutral water clusters. Bilbrey JA; Heindel JP; Schram M; Bandyopadhyay P; Xantheas SS; Choudhury S J Chem Phys; 2020 Jul; 153(2):024302. PubMed ID: 32668919 [TBL] [Abstract][Full Text] [Related]
40. Zn Coordination Chemistry: Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory. Amin EA; Truhlar DG J Chem Theory Comput; 2008 Jan; 4(1):75-85. PubMed ID: 26619981 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]