These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33630612)

  • 41. Delocalized Impurity Phonon Induced Electron-Hole Recombination in Doped Semiconductors.
    Zhang L; Zheng Q; Xie Y; Lan Z; Prezhdo OV; Saidi WA; Zhao J
    Nano Lett; 2018 Mar; 18(3):1592-1599. PubMed ID: 29393653
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2.
    Duncan WR; Craig CF; Prezhdo OV
    J Am Chem Soc; 2007 Jul; 129(27):8528-43. PubMed ID: 17579405
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermally Activated Optical Absorption into Polaronic States in Hematite.
    Shelton JL; Knowles KE
    J Phys Chem Lett; 2021 Apr; 12(13):3343-3351. PubMed ID: 33779162
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polaron formation and transport in Bi
    Tao J; Zhang Q; Liu T
    Phys Chem Chem Phys; 2022 Sep; 24(37):22918-22927. PubMed ID: 36124908
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe
    Carneiro LM; Cushing SK; Liu C; Su Y; Yang P; Alivisatos AP; Leone SR
    Nat Mater; 2017 Aug; 16(8):819-825. PubMed ID: 28692042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling polarons in density functional theory: lessons learned from TiO
    Reticcioli M; Diebold U; Franchini C
    J Phys Condens Matter; 2022 Mar; 34(20):. PubMed ID: 35213845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recombination of polaron and exciton in conjugated polymers.
    Meng Y; Liu XJ; Di B; An Z
    J Chem Phys; 2009 Dec; 131(24):244502. PubMed ID: 20059074
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational modeling of self-trapped electrons in rutile TiO2.
    Yan L; Elenewski JE; Jiang W; Chen H
    Phys Chem Chem Phys; 2015 Nov; 17(44):29949-57. PubMed ID: 26490001
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Infrared and Near-Infrared Spectrometry of Anatase and Rutile Particles Bandgap Excited in Liquid.
    Fu Z; Onishi H
    J Phys Chem B; 2023 Jan; 127(1):321-327. PubMed ID: 36542796
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formation of Plasmonic Polarons in Highly Electron-Doped Anatase TiO
    Ma X; Cheng Z; Tian M; Liu X; Cui X; Huang Y; Tan S; Yang J; Wang B
    Nano Lett; 2021 Jan; 21(1):430-436. PubMed ID: 33290081
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrafast dynamics of polarons in conductive polyaniline: comparison of primary and secondary doped forms.
    Kim J; Park S; Scherer NF
    J Phys Chem B; 2008 Dec; 112(49):15576-87. PubMed ID: 19367915
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Water-Hydrogen-Polaron Coupling at Anatase TiO
    Zhu YN; Teobaldi G; Liu LM
    J Phys Chem Lett; 2020 Jun; 11(11):4317-4325. PubMed ID: 32354210
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extreme electron polaron spatial delocalization in π-conjugated materials.
    Rawson J; Angiolillo PJ; Therien MJ
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13779-83. PubMed ID: 26512097
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ag
    López-Caballero P; Miret-Artés S; Mitrushchenkov AO; de Lara-Castells MP
    J Chem Phys; 2020 Oct; 153(16):164702. PubMed ID: 33138404
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient Method for Modeling Polarons Using Electronic Structure Methods.
    Pham TD; Deskins NA
    J Chem Theory Comput; 2020 Aug; 16(8):5264-5278. PubMed ID: 32603136
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ab Initio Electron-Phonon Interactions in Correlated Electron Systems.
    Zhou JJ; Park J; Timrov I; Floris A; Cococcioni M; Marzari N; Bernardi M
    Phys Rev Lett; 2021 Sep; 127(12):126404. PubMed ID: 34597093
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identifying the role of excess electrons and holes for initiating the photocatalytic dissociation of methanol on a TiO
    Yu F; Hu Z
    Phys Chem Chem Phys; 2020 May; 22(19):11086-11094. PubMed ID: 32373873
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transport of Polarons in Graphene Nanoribbons.
    Ribeiro LA; da Cunha WF; Fonseca AL; e Silva GM; Stafström S
    J Phys Chem Lett; 2015 Feb; 6(3):510-4. PubMed ID: 26261972
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrical Transport in Iron Phosphate-Based Glass-(Ceramics): Insights into the Role of B
    Bafti A; Kubuki S; Ertap H; Yüksek M; Karabulut M; Moguš-Milanković A; Pavić L
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214967
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2.
    Santomauro FG; Lübcke A; Rittmann J; Baldini E; Ferrer A; Silatani M; Zimmermann P; Grübel S; Johnson JA; Mariager SO; Beaud P; Grolimund D; Borca C; Ingold G; Johnson SL; Chergui M
    Sci Rep; 2015 Oct; 5():14834. PubMed ID: 26437873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.