BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33630788)

  • 1. Novel vitreous substitutes: the next frontier in vitreoretinal surgery.
    Schulz A; Januschowski K; Szurman P
    Curr Opin Ophthalmol; 2021 May; 32(3):288-293. PubMed ID: 33630788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric hydrogel as a vitreous substitute: current research, challenges, and future directions.
    Wang T; Ran R; Ma Y; Zhang M
    Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34038870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymeric hydrogels as a vitreous replacement strategy in the eye.
    Lin Q; Lim JYC; Xue K; Su X; Loh XJ
    Biomaterials; 2021 Jan; 268():120547. PubMed ID: 33307366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desired properties of polymeric hydrogel vitreous substitute.
    Qu S; Tang Y; Ning Z; Zhou Y; Wu H
    Biomed Pharmacother; 2024 Mar; 172():116154. PubMed ID: 38306844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade.
    Liu Z; Liow SS; Lai SL; Alli-Shaik A; Holder GE; Parikh BH; Krishnakumar S; Li Z; Tan MJ; Gunaratne J; Barathi VA; Hunziker W; Lakshminarayanan R; Tan CWT; Chee CK; Zhao P; Lingam G; Loh XJ; Su X
    Nat Biomed Eng; 2019 Aug; 3(8):598-610. PubMed ID: 30962587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vitreous substitutes: An overview of the properties, importance, and development.
    Yadav I; Purohit SD; Singh H; Bhushan S; Yadav MK; Velpandian T; Chawla R; Hazra S; Mishra NC
    J Biomed Mater Res B Appl Biomater; 2021 Aug; 109(8):1156-1176. PubMed ID: 33319466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous.
    Swindle KE; Hamilton PD; Ravi N
    J Biomed Mater Res A; 2008 Dec; 87(3):656-65. PubMed ID: 18189301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly transparent tri-polymer complex
    Yadav I; Purohit SD; Singh H; Das N; Roy P; Mishra NC
    Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34525462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic hydrogel with tunable mechanical properties for vitreous substitutes.
    Santhanam S; Liang J; Struckhoff J; Hamilton PD; Ravi N
    Acta Biomater; 2016 Oct; 43():327-337. PubMed ID: 27481290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Super-fast
    Ran R; Shi W; Gao Y; Wang T; Ren X; Chen Y; Wu X; Cao J; Zhang M
    J Mater Chem B; 2021 Nov; 9(44):9162-9173. PubMed ID: 34697622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitreous substitutes: a comprehensive review.
    Kleinberg TT; Tzekov RT; Stein L; Ravi N; Kaushal S
    Surv Ophthalmol; 2011; 56(4):300-23. PubMed ID: 21601902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes.
    Raia NR; Jia D; Ghezzi CE; Muthukumar M; Kaplan DL
    Biomaterials; 2020 Mar; 233():119729. PubMed ID: 31927250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate- and Hyaluronic Acid-Based Hydrogels as Vitreous Substitutes: An In Vitro Evaluation.
    Schulz A; Rickmann A; Wahl S; Germann A; Stanzel BV; Januschowski K; Szurman P
    Transl Vis Sci Technol; 2020 Dec; 9(13):34. PubMed ID: 33384888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rabbit study of an in situ forming hydrogel vitreous substitute.
    Swindle-Reilly KE; Shah M; Hamilton PD; Eskin TA; Kaushal S; Ravi N
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4840-6. PubMed ID: 19324846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High molecular weight hyper-branched PCL-based thermogelling vitreous endotamponades.
    Lin Q; Liu Z; Wong DSL; Lim CC; Liu CK; Guo L; Zhao X; Boo YJ; Wong JHM; Tan RPT; Xue K; Lim JYC; Su X; Loh XJ
    Biomaterials; 2022 Jan; 280():121262. PubMed ID: 34810039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable oxime-crosslinked hyaluronan-based hydrogel as a biomimetic vitreous substitute.
    Baker AEG; Cui H; Ballios BG; Ing S; Yan P; Wolfer J; Wright T; Dang M; Gan NY; Cooke MJ; Ortín-Martínez A; Wallace VA; van der Kooy D; Devenyi R; Shoichet MS
    Biomaterials; 2021 Apr; 271():120750. PubMed ID: 33725584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Using Biomaterials as Vitreous Substitutes.
    Su X; Tan MJ; Li Z; Wong M; Rajamani L; Lingam G; Loh XJ
    Biomacromolecules; 2015 Oct; 16(10):3093-102. PubMed ID: 26366887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cross-linked hyaluronic acid hydrogel (Healaflow(®)) as a novel vitreous substitute.
    Barth H; Crafoord S; Andréasson S; Ghosh F
    Graefes Arch Clin Exp Ophthalmol; 2016 Apr; 254(4):697-703. PubMed ID: 26743755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injectable self-crosslinking hydrogels based on hyaluronic acid as vitreous substitutes.
    Yu S; Wang S; Xia L; Hu H; Zou M; Jiang Z; Chi J; Zhang Y; Li H; Yang C; Liu W; Han B
    Int J Biol Macromol; 2022 May; 208():159-171. PubMed ID: 35301003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Artificial vitreous body: Strategies for vitreous body substitutes].
    Mariacher S; Szurman P
    Ophthalmologe; 2015 Jul; 112(7):572-9. PubMed ID: 26077344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.