BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 33630831)

  • 21. Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2.
    El-Shennawy L; Hoffmann AD; Dashzeveg NK; McAndrews KM; Mehl PJ; Cornish D; Yu Z; Tokars VL; Nicolaescu V; Tomatsidou A; Mao C; Felicelli CJ; Tsai CF; Ostiguin C; Jia Y; Li L; Furlong K; Wysocki J; Luo X; Ruivo CF; Batlle D; Hope TJ; Shen Y; Chae YK; Zhang H; LeBleu VS; Shi T; Swaminathan S; Luo Y; Missiakas D; Randall GC; Demonbreun AR; Ison MG; Kalluri R; Fang D; Liu H
    Nat Commun; 2022 Jan; 13(1):405. PubMed ID: 35058437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The OM-85 bacterial lysate inhibits SARS-CoV-2 infection of epithelial cells by downregulating SARS-CoV-2 receptor expression.
    Pivniouk V; Pivniouk O; DeVries A; Uhrlaub JL; Michael A; Pivniouk D; VanLinden SR; Conway MY; Hahn S; Malone SP; Ezeh P; Churko JM; Anderson D; Kraft M; Nikolich-Zugich J; Vercelli D
    J Allergy Clin Immunol; 2022 Mar; 149(3):923-933.e6. PubMed ID: 34902435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SARS-CoV-2 Entry: At the Crossroads of CD147 and ACE2.
    Fenizia C; Galbiati S; Vanetti C; Vago R; Clerici M; Tacchetti C; Daniele T
    Cells; 2021 Jun; 10(6):. PubMed ID: 34201214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ILRUN Downregulates ACE2 Expression and Blocks Infection of Human Cells by SARS-CoV-2.
    Tribolet L; Alexander MR; Brice AM; van Vuren PJ; Rootes CL; Mara K; McDonald M; Bruce KL; Gough TJ; Shi S; Cowled C; Bean AGD; Stewart CR
    J Virol; 2021 Jul; 95(15):e0032721. PubMed ID: 33963054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A vesicular stomatitis virus-based prime-boost vaccination strategy induces potent and protective neutralizing antibodies against SARS-CoV-2.
    Kim GN; Choi JA; Wu K; Saeedian N; Yang E; Park H; Woo SJ; Lim G; Kim SG; Eo SK; Jeong HW; Kim T; Chang JH; Seo SH; Kim NH; Choi E; Choo S; Lee S; Winterborn A; Li Y; Parham K; Donovan JM; Fenton B; Dikeakos JD; Dekaban GA; Haeryfar SMM; Troyer RM; Arts EJ; Barr SD; Song M; Kang CY
    PLoS Pathog; 2021 Dec; 17(12):e1010092. PubMed ID: 34914812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Versatile Reporter System To Monitor Virus-Infected Cells and Its Application to Dengue Virus and SARS-CoV-2.
    Pahmeier F; Neufeldt CJ; Cerikan B; Prasad V; Pape C; Laketa V; Ruggieri A; Bartenschlager R; Cortese M
    J Virol; 2021 Jan; 95(4):. PubMed ID: 33257477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TMPRSS2 and RNA-Dependent RNA Polymerase Are Effective Targets of Therapeutic Intervention for Treatment of COVID-19 Caused by SARS-CoV-2 Variants (B.1.1.7 and B.1.351).
    Lee J; Lee J; Kim HJ; Ko M; Jee Y; Kim S
    Microbiol Spectr; 2021 Sep; 9(1):e0047221. PubMed ID: 34378968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Newly Engineered A549 Cell Line Expressing ACE2 and TMPRSS2 Is Highly Permissive to SARS-CoV-2, Including the Delta and Omicron Variants.
    Chang CW; Parsi KM; Somasundaran M; Vanderleeden E; Liu P; Cruz J; Cousineau A; Finberg RW; Kurt-Jones EA
    Viruses; 2022 Jun; 14(7):. PubMed ID: 35891350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy.
    Li X; Hou P; Ma W; Wang X; Wang H; Yu Z; Chang H; Wang T; Jin S; Wang X; Wang W; Zhao Y; Zhao Y; Xu C; Ma X; Gao Y; He H
    Cell Mol Immunol; 2022 Jan; 19(1):67-78. PubMed ID: 34845370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of SARS-CoV-2 infection dynamic in vivo using reporter-expressing viruses.
    Ye C; Chiem K; Park JG; Silvas JA; Morales Vasquez D; Sourimant J; Lin MJ; Greninger AL; Plemper RK; Torrelles JB; Kobie JJ; Walter MR; de la Torre JC; Martinez-Sobrido L
    Proc Natl Acad Sci U S A; 2021 Oct; 118(41):. PubMed ID: 34561300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stapled Peptides Based on Human Angiotensin-Converting Enzyme 2 (ACE2) Potently Inhibit SARS-CoV-2 Infection
    Curreli F; Victor SMB; Ahmed S; Drelich A; Tong X; Tseng CK; Hillyer CD; Debnath AK
    mBio; 2020 Dec; 11(6):. PubMed ID: 33310780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation of SARS-CoV-2 from COVID-19 Patients and an Asymptomatic Individual.
    Hishiki T; Usui K; An T; Suzuki R; Sakuragi JI; Tanaka Y; Matsuki Y; Kawai J; Kogo Y; Hayashizaki Y; Takasaki T
    Jpn J Infect Dis; 2022 May; 75(3):277-280. PubMed ID: 34719530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection.
    Iwata-Yoshikawa N; Okamura T; Shimizu Y; Hasegawa H; Takeda M; Nagata N
    J Virol; 2019 Mar; 93(6):. PubMed ID: 30626688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The TMPRSS2 Inhibitor Nafamostat Reduces SARS-CoV-2 Pulmonary Infection in Mouse Models of COVID-19.
    Li K; Meyerholz DK; Bartlett JA; McCray PB
    mBio; 2021 Aug; 12(4):e0097021. PubMed ID: 34340553
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Q493K and Q498H substitutions in Spike promote adaptation of SARS-CoV-2 in mice.
    Huang K; Zhang Y; Hui X; Zhao Y; Gong W; Wang T; Zhang S; Yang Y; Deng F; Zhang Q; Chen X; Yang Y; Sun X; Chen H; Tao YJ; Zou Z; Jin M
    EBioMedicine; 2021 May; 67():103381. PubMed ID: 33993052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The K18-Human ACE2 Transgenic Mouse Model Recapitulates Non-severe and Severe COVID-19 in Response to an Infectious Dose of the SARS-CoV-2 Virus.
    Dong W; Mead H; Tian L; Park JG; Garcia JI; Jaramillo S; Barr T; Kollath DS; Coyne VK; Stone NE; Jones A; Zhang J; Li A; Wang LS; Milanes-Yearsley M; Torrelles JB; Martinez-Sobrido L; Keim PS; Barker BM; Caligiuri MA; Yu J
    J Virol; 2022 Jan; 96(1):e0096421. PubMed ID: 34668775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development.
    Karnik M; Beeraka NM; Uthaiah CA; Nataraj SM; Bettadapura ADS; Aliev G; Madhunapantula SV
    Mol Neurobiol; 2021 Sep; 58(9):4535-4563. PubMed ID: 34089508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Replication Kinetics of B.1.351 and B.1.1.7 SARS-CoV-2 Variants of Concern Including Assessment of a B.1.1.7 Mutant Carrying a Defective ORF7a Gene.
    Pyke AT; Nair N; van den Hurk AF; Burtonclay P; Nguyen S; Barcelon J; Kistler C; Schlebusch S; McMahon J; Moore F
    Viruses; 2021 Jun; 13(6):. PubMed ID: 34200386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of an in vitro model for animal species susceptibility to SARS-CoV-2 replication based on expression of ACE2 and TMPRSS2 in avian cells.
    Kapczynski DR; Sweeney R; Spackman E; Pantin-Jackwood M; Suarez DL
    Virology; 2022 Apr; 569():1-12. PubMed ID: 35217403
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid Development of SARS-CoV-2 Spike Protein Receptor-Binding Domain Self-Assembled Nanoparticle Vaccine Candidates.
    Kang YF; Sun C; Zhuang Z; Yuan RY; Zheng Q; Li JP; Zhou PP; Chen XC; Liu Z; Zhang X; Yu XH; Kong XW; Zhu QY; Zhong Q; Xu M; Zhong NS; Zeng YX; Feng GK; Ke C; Zhao JC; Zeng MS
    ACS Nano; 2021 Feb; 15(2):2738-2752. PubMed ID: 33464829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.