These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33630896)

  • 21. A novel mesh processing based technique for 3D plant analysis.
    Paproki A; Sirault X; Berry S; Furbank R; Fripp J
    BMC Plant Biol; 2012 May; 12():63. PubMed ID: 22553969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Methods of high-throughput plant phenotyping for large-scale breeding and genetic experiments].
    Afonnikov DA; Genaev MA; Doroshkov AV; Komyshev EG; Pshenichnikova TA
    Genetika; 2016 Jul; 52(7):788-803. PubMed ID: 29368867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new markerless patient-to-image registration method using a portable 3D scanner.
    Fan Y; Jiang D; Wang M; Song Z
    Med Phys; 2014 Oct; 41(10):101910. PubMed ID: 25281962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-Source Data Fusion Improves Time-Series Phenotype Accuracy in Maize under a Field High-Throughput Phenotyping Platform.
    Li Y; Wen W; Fan J; Gou W; Gu S; Lu X; Yu Z; Wang X; Guo X
    Plant Phenomics; 2023; 5():0043. PubMed ID: 37223316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel LiDAR-Based Instrument for High-Throughput, 3D Measurement of Morphological Traits in Maize and Sorghum.
    Thapa S; Zhu F; Walia H; Yu H; Ge Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29652788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Robotic Platform for Corn Seedling Morphological Traits Characterization.
    Lu H; Tang L; Whitham SA; Mei Y
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28895892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leaf Segmentation on Dense Plant Point Clouds with Facet Region Growing.
    Li D; Cao Y; Tang XS; Yan S; Cai X
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30366434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PhenoTrack3D: an automatic high-throughput phenotyping pipeline to track maize organs over time.
    Daviet B; Fernandez R; Cabrera-Bosquet L; Pradal C; Fournier C
    Plant Methods; 2022 Dec; 18(1):130. PubMed ID: 36482291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leveraging Image Analysis to Compute 3D Plant Phenotypes Based on Voxel-Grid Plant Reconstruction.
    Das Choudhury S; Maturu S; Samal A; Stoerger V; Awada T
    Front Plant Sci; 2020; 11():521431. PubMed ID: 33362806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identifying Developmental Patterns in Structured Plant Phenotyping Data.
    Guédon Y; Caraglio Y; Granier C; Lauri PÉ; Muller B
    Methods Mol Biol; 2022; 2395():199-225. PubMed ID: 34822155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic point cloud registration algorithm based on the feature histogram of local surface.
    Lu J; Wang Z; Hua B; Chen K
    PLoS One; 2020; 15(9):e0238802. PubMed ID: 32915857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-Dimensional Reconstruction Method of Rapeseed Plants in the Whole Growth Period Using RGB-D Camera.
    Teng X; Zhou G; Wu Y; Huang C; Dong W; Xu S
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pruning Points Detection of Sweet Pepper Plants Using 3D Point Clouds and Semantic Segmentation Neural Network.
    Giang TTH; Ryoo YJ
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Field phenotyping of grapevine growth using dense stereo reconstruction.
    Klodt M; Herzog K; Töpfer R; Cremers D
    BMC Bioinformatics; 2015 May; 16():143. PubMed ID: 25943369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine Learning-Based Plant Detection Algorithms to Automate Counting Tasks Using 3D Canopy Scans.
    Kartal S; Choudhary S; Masner J; Kholová J; Stočes M; Gattu P; Schwartz S; Kissel E
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.
    Liu W; Cheung Y; Sawant A; Ruan D
    Med Phys; 2016 May; 43(5):2353. PubMed ID: 27147347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Panicle-3D: Efficient Phenotyping Tool for Precise Semantic Segmentation of Rice Panicle Point Cloud.
    Gong L; Du X; Zhu K; Lin K; Lou Q; Yuan Z; Huang G; Liu C
    Plant Phenomics; 2021; 2021():9838929. PubMed ID: 35024618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.
    Liu W; Cheung Y; Sabouri P; Arai TJ; Sawant A; Ruan D
    Med Phys; 2015 Nov; 42(11):6564-71. PubMed ID: 26520747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments.
    Kjaer KH; Ottosen CO
    Sensors (Basel); 2015 Jun; 15(6):13533-47. PubMed ID: 26066990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robust Feature Matching for 3D Point Clouds with Progressive Consistency Voting.
    Quan S; Yin K; Ye K; Nan K
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.