These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33630896)

  • 41. BreedVision--a multi-sensor platform for non-destructive field-based phenotyping in plant breeding.
    Busemeyer L; Mentrup D; Möller K; Wunder E; Alheit K; Hahn V; Maurer HP; Reif JC; Würschum T; Müller J; Rahe F; Ruckelshausen A
    Sensors (Basel); 2013 Feb; 13(3):2830-47. PubMed ID: 23447014
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments.
    Kjaer KH; Ottosen CO
    Sensors (Basel); 2015 Jun; 15(6):13533-47. PubMed ID: 26066990
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Robust Feature Matching for 3D Point Clouds with Progressive Consistency Voting.
    Quan S; Yin K; Ye K; Nan K
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298069
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions.
    Friedli M; Kirchgessner N; Grieder C; Liebisch F; Mannale M; Walter A
    Plant Methods; 2016; 12():9. PubMed ID: 26834822
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low-Cost Three-Dimensional Modeling of Crop Plants.
    Martinez-Guanter J; Ribeiro Á; Peteinatos GG; Pérez-Ruiz M; Gerhards R; Bengochea-Guevara JM; Machleb J; Andújar D
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261757
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Generating 3D Multispectral Point Clouds of Plants with Fusion of Snapshot Spectral and RGB-D Images.
    Xie P; Du R; Ma Z; Cen H
    Plant Phenomics; 2023; 5():0040. PubMed ID: 37022332
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel way to validate UAS-based high-throughput phenotyping protocols using in silico experiments for plant breeding purposes.
    Galli G; Sabadin F; Costa-Neto GMF; Fritsche-Neto R
    Theor Appl Genet; 2021 Feb; 134(2):715-730. PubMed ID: 33216217
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
    Jiang Y; Li C; Paterson AH; Sun S; Xu R; Robertson J
    Front Plant Sci; 2017; 8():2233. PubMed ID: 29441074
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development and Validation of Methodology for Estimating Potato Canopy Structure for Field Crop Phenotyping and Improved Breeding.
    de Jesus Colwell F; Souter J; Bryan GJ; Compton LJ; Boonham N; Prashar A
    Front Plant Sci; 2021; 12():612843. PubMed ID: 33643346
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calculation Method for Phenotypic Traits Based on the 3D Reconstruction of Maize Canopies.
    Ma X; Zhu K; Guan H; Feng J; Yu S; Liu G
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30857269
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vision Based Modeling of Plants Phenotyping in Vertical Farming under Artificial Lighting.
    Franchetti B; Ntouskos V; Giuliani P; Herman T; Barnes L; Pirri F
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31658728
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PSegNet: Simultaneous Semantic and Instance Segmentation for Point Clouds of Plants.
    Li D; Li J; Xiang S; Pan A
    Plant Phenomics; 2022; 2022():9787643. PubMed ID: 35693119
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of 3D Point Clouds of Oilseed Rape Plants Based on Time-of-Flight Cameras.
    Ma Z; Sun D; Xu H; Zhu Y; He Y; Cen H
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477933
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alignment of continuous video onto 3D point clouds.
    Zhao W; Nister D; Hsu S
    IEEE Trans Pattern Anal Mach Intell; 2005 Aug; 27(8):1305-18. PubMed ID: 16119268
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Active Vision and Surface Reconstruction for 3D Plant Shoot Modelling.
    Gibbs JA; Pound MP; French AP; Wells DM; Murchie EH; Pridmore TP
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1907-1917. PubMed ID: 31027044
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improved Point-Cloud Segmentation for Plant Phenotyping Through Class-Dependent Sampling of Training Data to Battle Class Imbalance.
    Boogaard FP; van Henten EJ; Kootstra G
    Front Plant Sci; 2022; 13():838190. PubMed ID: 35419014
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Field-Based High-Throughput Phenotyping for Maize Plant Using 3D LiDAR Point Cloud Generated With a "Phenomobile".
    Qiu Q; Sun N; Bai H; Wang N; Fan Z; Wang Y; Meng Z; Li B; Cong Y
    Front Plant Sci; 2019; 10():554. PubMed ID: 31134110
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In-field High Throughput Phenotyping and Cotton Plant Growth Analysis Using LiDAR.
    Sun S; Li C; Paterson AH; Jiang Y; Xu R; Robertson JS; Snider JL; Chee PW
    Front Plant Sci; 2018; 9():16. PubMed ID: 29403522
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Automatic Registration of Terrestrial Laser Scanning Point Clouds using Panoramic Reflectance Images.
    Kang Z; Li J; Zhang L; Zhao Q; Zlatanova S
    Sensors (Basel); 2009; 9(4):2621-46. PubMed ID: 22574036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.