These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 33630903)
1. Computational fluid dynamics of the right atrium: Assessment of modelling criteria for the evaluation of dialysis catheters. de Oliveira DC; Owen DG; Qian S; Green NC; Espino DM; Shepherd DET PLoS One; 2021; 16(2):e0247438. PubMed ID: 33630903 [TBL] [Abstract][Full Text] [Related]
2. Hemodialysis catheter tip design: observations on fluid flow and recirculation. Vesely TM; Ravenscroft A J Vasc Access; 2016; 17(1):29-39. PubMed ID: 26349860 [TBL] [Abstract][Full Text] [Related]
3. Comparison of recirculation percentage of the palindrome catheter and standard hemodialysis catheters in a swine model. Tal MG J Vasc Interv Radiol; 2005 Sep; 16(9):1237-40. PubMed ID: 16151065 [TBL] [Abstract][Full Text] [Related]
4. Computational fluid dynamics-analysis of the Niagara hemodialysis catheter in a right heart model. Mareels G; De Wachter DS; Verdonck PR Artif Organs; 2004 Jul; 28(7):639-48. PubMed ID: 15209857 [TBL] [Abstract][Full Text] [Related]
5. Comparison of symmetric hemodialysis catheters using computational fluid dynamics. Clark TW; Isu G; Gallo D; Verdonck P; Morbiducci U J Vasc Interv Radiol; 2015 Feb; 26(2):252-9.e2. PubMed ID: 25645414 [TBL] [Abstract][Full Text] [Related]
6. Numerical modelling of the interaction between dialysis catheter, vascular vessel and blood considering elastic structural deformation. Chen Z; Zheng Q; Tong Z; Huang X; Yu A Int J Numer Method Biomed Eng; 2024 May; 40(5):e3811. PubMed ID: 38468441 [TBL] [Abstract][Full Text] [Related]
7. Numerical Study on the Impact of Central Venous Catheter Placement on Blood Flow in the Cavo-Atrial Junction. Su B; Palahnuk H; Harbaugh T; Rizk E; Hazard W; Chan A; Bernstein J; Weinsaft JW; Manning KB Ann Biomed Eng; 2024 May; 52(5):1378-1392. PubMed ID: 38407724 [TBL] [Abstract][Full Text] [Related]
8. Particle image velocimetry-validated, computational fluid dynamics-based design to reduce shear stress and residence time in central venous hemodialysis catheters. Mareels G; Kaminsky R; Eloot S; Verdonck PR ASAIO J; 2007; 53(4):438-46. PubMed ID: 17667228 [TBL] [Abstract][Full Text] [Related]
9. A systematic review and meta-analysis of the comparison of performance among step-tip, split-tip, and symmetrical-tip hemodialysis catheters. Ling XC; Lu HP; Loh EW; Lin YK; Li YS; Lin CH; Ko YC; Wu MY; Lin YF; Tam KW J Vasc Surg; 2019 Apr; 69(4):1282-1292. PubMed ID: 30905366 [TBL] [Abstract][Full Text] [Related]
10. Accurate placement of central venous catheters: a prospective, randomized, multicenter trial. McGee WT; Ackerman BL; Rouben LR; Prasad VM; Bandi V; Mallory DL Crit Care Med; 1993 Aug; 21(8):1118-23. PubMed ID: 8339574 [TBL] [Abstract][Full Text] [Related]
12. Impact of side-hole geometry on the performance of hemodialysis catheter tips: A computational fluid dynamics assessment. Owen DG; de Oliveira DC; Qian S; Green NC; Shepherd DET; Espino DM PLoS One; 2020; 15(8):e0236946. PubMed ID: 32764790 [TBL] [Abstract][Full Text] [Related]
13. Patient-Specific Atrial Hemodynamics of a Double Lumen Neonatal Cannula in Correct Caval Position. Muhammad J; Rezaeimoghaddam M; Cakmak B; Rasooli R; Salihoglu E; Yıldız Y; Pekkan K Artif Organs; 2018 Apr; 42(4):401-409. PubMed ID: 29572879 [TBL] [Abstract][Full Text] [Related]
14. Fibrin sheath formation and intimal thickening after catheter placement in dog model: role of hemodynamic wall shear stress. Wang LH; Wei F; Jia L; Lu Z; Wang B; Dong HY; Yu HB; Sun GJ; Yang J; Li B; Meng J; Zhang RN; Bi XQ; Chen HY; Jiang AL J Vasc Access; 2015; 16(4):275-84. PubMed ID: 25684581 [TBL] [Abstract][Full Text] [Related]
15. Haemodynamic assessment of human coronary arteries is affected by degree of freedom of artery movement. Javadzadegan A; Yong AS; Chang M; Ng MK; Behnia M; Kritharides L Comput Methods Biomech Biomed Engin; 2017 Feb; 20(3):260-272. PubMed ID: 27467730 [TBL] [Abstract][Full Text] [Related]
16. Computational flow dynamics and preclinical assessment of a novel hemodialysis catheter. Clark TW; Van Canneyt K; Verdonck P Semin Dial; 2012; 25(5):574-81. PubMed ID: 22353667 [TBL] [Abstract][Full Text] [Related]
17. Fluid mechanics and clinical success of central venous catheters for dialysis--answers to simple but persisting problems. Ash SR Semin Dial; 2007; 20(3):237-56. PubMed ID: 17555490 [TBL] [Abstract][Full Text] [Related]
18. Use of Bedside Ultrasonography and Saline Flush Technique for Evaluation of Central Venous Catheter Placement in Children. Yesilbas O; Sevketoglu E; Kihtir HS; Talip Petmezci M; Akcay N; Kocoglu Barlas U; Palabiyik F Artif Organs; 2018 Dec; 42(12):1157-1163. PubMed ID: 30132930 [TBL] [Abstract][Full Text] [Related]
19. Blood flow in hemodialysis catheters: a numerical simulation and microscopic analysis of in vivo-formed fibrin. Lucas TC; Tessarolo F; Jakitsch V; Caola I; Brunori G; Nollo G; Huebner R Artif Organs; 2014 Jul; 38(7):556-65. PubMed ID: 24341622 [TBL] [Abstract][Full Text] [Related]
20. Tip position of long-term central venous access devices used for parenteral nutrition. DeChicco R; Seidner DL; Brun C; Steiger E; Stafford J; Lopez R JPEN J Parenter Enteral Nutr; 2007; 31(5):382-7. PubMed ID: 17712146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]