BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33630967)

  • 1. Design and construction of a novel measurement device for mechanical characterization of hydrogels: A case study.
    Shahab S; Kasra M; Dolatshahi-Pirouz A
    PLoS One; 2021; 16(2):e0247727. PubMed ID: 33630967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A protocol for rheological characterization of hydrogels for tissue engineering strategies.
    Zuidema JM; Rivet CJ; Gilbert RJ; Morrison FA
    J Biomed Mater Res B Appl Biomater; 2014 Jul; 102(5):1063-73. PubMed ID: 24357498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels.
    Buckley CT; Thorpe SD; O'Brien FJ; Robinson AJ; Kelly DJ
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):512-21. PubMed ID: 19627858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and mechanical properties of RAFT-stabilised collagen gels for tissue engineering applications.
    Kayal C; Shipley RJ; Phillips JB
    J Mech Behav Biomed Mater; 2019 Nov; 99():216-224. PubMed ID: 31394492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined experimental and computational characterization of crosslinked collagen-based hydrogels.
    Valero C; Amaveda H; Mora M; García-Aznar JM
    PLoS One; 2018; 13(4):e0195820. PubMed ID: 29664953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis.
    Suriano R; Griffini G; Chiari M; Levi M; Turri S
    J Mech Behav Biomed Mater; 2014 Feb; 30():339-46. PubMed ID: 24368174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the hydration on the biomechanical properties in a fibrin-agarose tissue-like model.
    Scionti G; Moral M; Toledano M; Osorio R; Durán JD; Alaminos M; Campos A; López-López MT
    J Biomed Mater Res A; 2014 Aug; 102(8):2573-82. PubMed ID: 23963645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined numerical and experimental biomechanical characterization of soft collagen hydrogel substrate.
    Castro AP; Laity P; Shariatzadeh M; Wittkowske C; Holland C; Lacroix D
    J Mater Sci Mater Med; 2016 Apr; 27(4):79. PubMed ID: 26914710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties.
    Buitrago JO; Patel KD; El-Fiqi A; Lee JH; Kundu B; Lee HH; Kim HW
    Acta Biomater; 2018 Mar; 69():218-233. PubMed ID: 29410166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels.
    Roberts JJ; Earnshaw A; Ferguson VL; Bryant SJ
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):158-69. PubMed ID: 21714081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan/agarose hydrogels: cooperative properties and microfluidic preparation.
    Zamora-Mora V; Velasco D; Hernández R; Mijangos C; Kumacheva E
    Carbohydr Polym; 2014 Oct; 111():348-55. PubMed ID: 25037360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insight into agarose gel mechanical properties.
    Normand V; Lootens DL; Amici E; Plucknett KP; Aymard P
    Biomacromolecules; 2000; 1(4):730-8. PubMed ID: 11710204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using cavitation rheology to understand dipeptide-based low molecular weight gels.
    Fuentes-Caparrós AM; Dietrich B; Thomson L; Chauveau C; Adams DJ
    Soft Matter; 2019 Aug; 15(31):6340-6347. PubMed ID: 31289805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-scale mechanical characterization of highly swollen photo-activated collagen hydrogels.
    Tronci G; Grant CA; Thomson NH; Russell SJ; Wood DJ
    J R Soc Interface; 2015 Jan; 12(102):20141079. PubMed ID: 25411409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron beam treated injectable agarose/alginate beads prepared by electrospraying.
    Krömmelbein C; Xie X; Seifert J; Konieczny R; Friebe S; Käs J; Riedel S; Mayr SG
    Carbohydr Polym; 2022 Dec; 298():120024. PubMed ID: 36241257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cold storage on collagen-based hydrogels for the three-dimensional culture of adipose-derived stem cells.
    Sancho A; Vázquez L; De-Juan-Pardo EM
    Biofabrication; 2014 Sep; 6(3):035017. PubMed ID: 24989789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and structural contribution of non-fibrillar matrix in uniaxial tension: a collagen-agarose co-gel model.
    Lake SP; Barocas VH
    Ann Biomed Eng; 2011 Jul; 39(7):1891-903. PubMed ID: 21416392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nonintrusive method of measuring the local mechanical properties of soft hydrogels using magnetic microneedles.
    Chippada U; Yurke B; Georges PC; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021014. PubMed ID: 19102573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering.
    Rennerfeldt DA; Renth AN; Talata Z; Gehrke SH; Detamore MS
    Biomaterials; 2013 Nov; 34(33):8241-57. PubMed ID: 23932504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.