BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33631444)

  • 1. Valorization of waste-cooking oil into sophorolipids and application of their methyl hydroxyl branched fatty acid derivatives to produce engineering bioplastics.
    Kim JH; Oh YR; Hwang J; Kang J; Kim H; Jang YA; Lee SS; Hwang SY; Park J; Eom GT
    Waste Manag; 2021 Apr; 124():195-202. PubMed ID: 33631444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of sophorolipids production in Candida batistae, an unexplored sophorolipids producer, by fed-batch fermentation.
    Kim JH; Oh YR; Han SW; Jang YA; Hong SH; Ahn JH; Eom GT
    Bioprocess Biosyst Eng; 2021 Apr; 44(4):831-839. PubMed ID: 33683450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the production of Sophorolipid by Starmerella bombicola yeast using fried waste oil fermentation.
    Wang H; Gao R; Song X; Yuan X; Chen X; Zhao Y
    Biosci Rep; 2024 Feb; 44(2):. PubMed ID: 38063133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced-Cost Production of Sophorolipids by
    Qin Z; Guo W; Liu J; Zhao G; Liu M; Song X
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time dynamic analysis with low-field nuclear magnetic resonance of residual oil and sophorolipids concentrations in the fermentation process of Starmerella bombicola.
    Chen Y; Lin Y; Tian X; Li Q; Chu J
    J Microbiol Methods; 2019 Feb; 157():9-15. PubMed ID: 30552969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study on de novo and ex novo lipid fermentation by oleaginous yeast using glucose and sonicated waste cooking oil.
    Patel A; Matsakas L
    Ultrason Sonochem; 2019 Apr; 52():364-374. PubMed ID: 30559080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of long-chain hydroxy fatty acids by Starmerella bombicola.
    De Graeve M; Van de Velde I; Saey L; Chys M; Oorts H; Kahriman H; Mincke S; Stevens C; De Maeseneire SL; Roelants SLKW; Soetaert WKG
    FEMS Yeast Res; 2019 Nov; 19(7):. PubMed ID: 31598679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of Cadmium and Lead from Contaminated Soils Using Sophorolipids from Fermentation Culture of
    Qi X; Xu X; Zhong C; Jiang T; Wei W; Song X
    Int J Environ Res Public Health; 2018 Oct; 15(11):. PubMed ID: 30360495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Updated component analysis method for naturally occurring sophorolipids from Starmerella bombicola.
    Kobayashi Y; Li Q; Ushimaru K; Hirota M; Morita T; Fukuoka T
    Appl Microbiol Biotechnol; 2024 Apr; 108(1):296. PubMed ID: 38607413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Production of Acid-Form Sophorolipids from Waste Glycerol and Fatty Acid Methyl Esters by Candida floricola.
    Konishi M; Morita T; Fukuoka T; Imura T; Uemura S; Iwabuchi H; Kitamoto D
    J Oleo Sci; 2018 Apr; 67(4):489-496. PubMed ID: 29526874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutant breeding of Starmerella bombicola by atmospheric and room-temperature plasma (ARTP) for improved production of specific or total sophorolipids.
    Ma XJ; Zhang HM; Lu XF; Han J; Zhu HX; Wang H; Yao RS
    Bioprocess Biosyst Eng; 2020 Oct; 43(10):1869-1883. PubMed ID: 32447514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound assisted in situ separation of sophorolipids in multi-phase fermentation system to achieve efficient production by Candida bombicola.
    Chen Y; Tang X; Li Y; Liu C; Zhuang Y; Tian X; Chu J
    Biotechnol J; 2022 Feb; 17(2):e2100478. PubMed ID: 34792852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-lubricants derived from waste cooking oil with improved oxidation stability and low-temperature properties.
    Li W; Wang X
    J Oleo Sci; 2015; 64(4):367-74. PubMed ID: 25766933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Rebirth of Waste Cooking Oil to Novel Bio-based Surfactants.
    Zhang QQ; Cai BX; Xu WJ; Gang HZ; Liu JF; Yang SZ; Mu BZ
    Sci Rep; 2015 May; 5():9971. PubMed ID: 25944301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waste cooking oil used as carbon source for microbial lipid production: Promoter or inhibitor.
    Gao Z; Ma Y; Liu Y; Wang Q
    Environ Res; 2022 Jan; 203():111881. PubMed ID: 34411547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-pyrolysis of corn cob and waste cooking oil in a fixed bed.
    Chen G; Liu C; Ma W; Zhang X; Li Y; Yan B; Zhou W
    Bioresour Technol; 2014 Aug; 166():500-7. PubMed ID: 24951937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodiesel production as a solution to waste cooking oil (WCO) disposal. Will any type of WCO do for a transesterification process? A quality assessment.
    Cordero-Ravelo V; Schallenberg-Rodriguez J
    J Environ Manage; 2018 Dec; 228():117-129. PubMed ID: 30212669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid alcohol based on waste cooking oil: Synthesis, properties, micromorphology and simultaneous synthesis of biodiesel.
    Xiong Y; Miao WF; Wang NN; Chen HM; Wang XR; Wang JY; Tan QL; Chen SP
    Waste Manag; 2019 Feb; 85():295-303. PubMed ID: 30803583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutants of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil as a biofactory for biodiesel production.
    Katre G; Ajmera N; Zinjarde S; RaviKumar A
    Microb Cell Fact; 2017 Oct; 16(1):176. PubMed ID: 29065878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From lab to market: An integrated bioprocess design approach for new-to-nature biosurfactants produced by Starmerella bombicola.
    Van Renterghem L; Roelants SLKW; Baccile N; Uyttersprot K; Taelman MC; Everaert B; Mincke S; Ledegen S; Debrouwer S; Scholtens K; Stevens C; Soetaert W
    Biotechnol Bioeng; 2018 May; 115(5):1195-1206. PubMed ID: 29288587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.