These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33631515)

  • 1. Impacts of rapid urbanization on characteristics, sources and variation of fecal coliform at watershed scale.
    Zhang X; Chen L; Shen Z
    J Environ Manage; 2021 May; 286():112195. PubMed ID: 33631515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal variability and key influencing factors of river fecal coliform within a typical complex watershed.
    Zhang X; Zhi X; Chen L; Shen Z
    Water Res; 2020 Jul; 178():115835. PubMed ID: 32330732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The seasonality of fecal coliform bacteria pollution and its influence on closures of shellfish harvesting areas in Mississippi Sound.
    Chigbu P; Gordon S; Tchounwou PB
    Int J Environ Res Public Health; 2005 Aug; 2(2):362-73. PubMed ID: 16705840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coliform pollution mapping in major watersheds along Jhelum River Basin of Kashmir Himalaya.
    Qayoom U; Islam ST; Sabha I; Bhat SU; Dar SA
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):7930-7941. PubMed ID: 36048395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of rainfall on the incidence of microbial faecal indicators and the dominant sources of faecal pollution in a Florida river.
    Shehane SD; Harwood VJ; Whitlock JE; Rose JB
    J Appl Microbiol; 2005; 98(5):1127-36. PubMed ID: 15836482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Pollution Characteristics and Health Risk Assessment of Microorganism Pollutions in the Beiyun River].
    Chen L; Li LF; Zhi XS; Zhang P; Dai Y; Xiao YC; Shen ZY
    Huan Jing Ke Xue; 2019 Feb; 40(2):633-639. PubMed ID: 30628325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a multivariate analysis modeling approach identifying sources and patterns of nonpoint fecal pollution in a mixed use watershed.
    Reitz A; Hemric E; Hall KK
    J Environ Manage; 2021 Jan; 277():111413. PubMed ID: 33035938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using multi-threshold regression techniques to assess river fecal pollution in the highly urbanized Tamsui River watershed.
    Jang CS
    Environ Monit Assess; 2021 Feb; 193(3):113. PubMed ID: 33544253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying fecal pollution sources using 3M(™) Petrifilm (™) count plates and antibiotic resistance analysis in the Horse Creek Watershed in Aiken County, SC (USA).
    Harmon SM; West RT; Yates JR
    Environ Monit Assess; 2014 Dec; 186(12):8215-27. PubMed ID: 25139239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.
    Servais P; Garcia-Armisen T; George I; Billen G
    Sci Total Environ; 2007 Apr; 375(1-3):152-67. PubMed ID: 17239424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploration of the driving factors and distribution of fecal coliform in rivers under a traditional agro-pastoral economy in Kyrgyzstan, Central Asia.
    Li Y; Ma L; Li Y; Abdyzhapar Uulu S; Abuduwaili J
    Chemosphere; 2022 Jan; 286(Pt 2):131700. PubMed ID: 34333187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning hierarchical Bayesian networks to assess the interaction effects of controlling factors on spatiotemporal patterns of fecal pollution in streams.
    Kim T; Lee D; Shin J; Kim Y; Cha Y
    Sci Total Environ; 2022 Mar; 812():152520. PubMed ID: 34953848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibiotic resistance analysis of fecal coliforms to determine fecal pollution sources in a mixed-use watershed.
    Burnes BS
    Environ Monit Assess; 2003 Jun; 85(1):87-98. PubMed ID: 12807258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of a linear regression model to assess the influence of urbanised areas and grazing pastures on the microbiological quality of rural streams.
    McGrane SJ; Tetzlaff D; Soulsby C
    Environ Monit Assess; 2014 Nov; 186(11):7141-55. PubMed ID: 25004858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of urban areas on the water quality gradient along a lowland river.
    Glińska-Lewczuk K; Gołaś I; Koc J; Gotkowska-Płachta A; Harnisz M; Rochwerger A
    Environ Monit Assess; 2016 Nov; 188(11):624. PubMed ID: 27757827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of fecal coliform inputs to aquatic systems through soil leaching.
    George I; Anzil A; Servais P
    Water Res; 2004 Feb; 38(3):611-8. PubMed ID: 14723930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple modes of water quality impairment by fecal contamination in a rapidly developing coastal area: southwest Brunswick County, North Carolina.
    Cahoon LB; Hales JC; Carey ES; Loucaides S; Rowland KR; Toothman BR
    Environ Monit Assess; 2016 Feb; 188(2):89. PubMed ID: 26769702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling spatiotemporal bacterial variability with meteorological and watershed land-use characteristics.
    Cha Y; Park MH; Lee SH; Kim JH; Cho KH
    Water Res; 2016 Sep; 100():306-315. PubMed ID: 27208919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating fecal coliform bacteria loading from an urbanizing watershed.
    Im S; Brannan KM; Mostaghimi S; Cho J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(3):663-79. PubMed ID: 15055933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation and integration of microbial source tracking in a river watershed monitoring plan.
    Ballesté E; Demeter K; Masterson B; Timoneda N; Sala-Comorera L; Meijer WG
    Sci Total Environ; 2020 Sep; 736():139573. PubMed ID: 32474276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.