These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 33631723)

  • 1. Tunable plasmonic resonator using conductivity modulated Bragg reflectors.
    Pathiranage S; Gunapala SD; Premaratne M
    J Phys Condens Matter; 2021 May; 33(24):. PubMed ID: 33631723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear optics of surface plasmon polaritons in subwavelength graphene ribbon resonators.
    Nasari H; Abrishamian MS; Berini P
    Opt Express; 2016 Jan; 24(1):708-23. PubMed ID: 26832300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of quarter-wave-stack dielectric mirrors used in a thin fabry-perot filter.
    Garmire E
    Appl Opt; 2003 Sep; 42(27):5442-9. PubMed ID: 14526831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth.
    Tao J; Yu X; Hu B; Dubrovkin A; Wang QJ
    Opt Lett; 2014 Jan; 39(2):271-4. PubMed ID: 24562124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable plasmon-induced transparency with a dielectric grating-coupled graphene structure for slowing terahertz waves.
    Wang T; Yan F; Wang R; Tian F; Li L
    Appl Opt; 2020 Aug; 59(24):7179-7185. PubMed ID: 32902480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and properties of dielectric surface plasmon Bragg mirrors.
    Randhawa S; González MU; Renger J; Enoch S; Quidant R
    Opt Express; 2010 Jul; 18(14):14496-510. PubMed ID: 20639935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significantly enhanced infrared absorption of graphene photodetector under surface-plasmonic coupling and polariton interference.
    Zhang Y; Meng D; Li X; Yu H; Lai J; Fan Z; Chen C
    Opt Express; 2018 Nov; 26(23):30862-30872. PubMed ID: 30469978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributed bragg reflector resonators with cylindrical symmetry and extremely high Q-factors.
    Tobar ME; le Floch JM; Cros D; Hartnett JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):17-26. PubMed ID: 15742559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene as a Tunable Anisotropic or Isotropic Plasmonic Metasurface.
    Huidobro PA; Kraft M; Maier SA; Pendry JB
    ACS Nano; 2016 May; 10(5):5499-506. PubMed ID: 27092391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A representative dataset of the self-reproducing light ray family between the multiple distributed Bragg reflectors of multiple VCSELs and the inner surface of plane-convex mirror.
    Li Y; Li Z; Chen M; Liu J
    Data Brief; 2021 Aug; 37():107257. PubMed ID: 34277904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Multiple-Step Plasmonic Bragg Reflectors with Graphene-Based Modulated Grating.
    Qian Q; Liang Y; Liang Y; Shao H; Zhang M; Xiao T; Wang J
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27916930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Q-factor distributed bragg reflector resonators with reflectors of arbitrary thickness.
    Le Floch JM; Tobar ME; Cros D; Krupka J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2689-95. PubMed ID: 18276575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Q-factor microwave Fabry-Perot resonator with distributed Bragg reflectors.
    Krupka J; Cwikla A; Mrozowski M; Clarke RN; Tobar ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Sep; 52(9):1443-51. PubMed ID: 16285441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene.
    Chen F; Cheng Y; Luo H
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narrow Linewidth Distributed Bragg Reflectors Based on InGaN/GaN Laser.
    Xie W; Li J; Liao M; Deng Z; Wang W; Sun S
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31405252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors.
    Pan C; Wu Q; Zhang Q; Zhao W; Qi J; Yao J; Zhang C; Hill WT; Xu J
    Opt Express; 2017 May; 25(9):9768-9777. PubMed ID: 28468357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bragg-Mirror-Assisted High-Contrast Plasmonic Interferometers: Concept and Potential in Terahertz Sensing.
    Ma Y; Li J; Han Z; Maeda H; Ma Y
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32708603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monolithic high contrast grating on GaSb/AlAsSb based epitaxial structures for mid-infrared wavelength applications.
    Schade A; Bader A; Huber T; Kuhn S; Czyszanowski T; Pfenning A; Rygała M; Smołka T; Motyka M; Sęk G; Hartmann F; Höfling S
    Opt Express; 2023 May; 31(10):16025-16034. PubMed ID: 37157690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact Plasmonic Distributed-Feedback Lasers as Dark Sources of Surface Plasmon Polaritons.
    Brechbühler R; Vonk SJW; Aellen M; Lassaline N; Keitel RC; Cocina A; Rossinelli AA; Rabouw FT; Norris DJ
    ACS Nano; 2021 Jun; 15(6):9935-9944. PubMed ID: 34029074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical engineering of PbS colloidal quantum dot solar cells via Fabry-Perot resonance and distributed Bragg reflectors.
    Bae S; Duff M; Hong JY; Lee JK
    Nano Converg; 2023 Jul; 10(1):31. PubMed ID: 37402935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.