These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33631783)

  • 1. Heterogeneity of fetal hemoglobin production in adult red blood cells.
    Khandros E; Blobel GA
    Curr Opin Hematol; 2021 May; 28(3):164-170. PubMed ID: 33631783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological and molecular approaches for the treatment of β-hemoglobin disorders.
    Lohani N; Bhargava N; Munshi A; Ramalingam S
    J Cell Physiol; 2018 Jun; 233(6):4563-4577. PubMed ID: 29159826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoterpenes as therapeutic candidates to induce fetal hemoglobin synthesis and up-regulation of gamma-globin gene: An in vitro and in vivo investigation.
    Iftikhar F; Khan MBN; Musharraf SG
    Eur J Pharmacol; 2021 Jan; 891():173700. PubMed ID: 33137331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The therapeutic reactivation of fetal haemoglobin.
    Olivieri NF; Weatherall DJ
    Hum Mol Genet; 1998; 7(10):1655-8. PubMed ID: 9735388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic studies of fetal hemoglobin in the Arab-Indian haplotype sickle cell-β(0) thalassemia.
    Alsultan A; Ngo D; Bae H; Sebastiani P; Baldwin CT; Melista E; Suliman AM; Albuali WH; Nasserullah Z; Luo HY; Chui DH; Steinberg MH; Al-Ali AK
    Am J Hematol; 2013 Jun; 88(6):531-2. PubMed ID: 23483609
    [No Abstract]   [Full Text] [Related]  

  • 6. Fetal hemoglobin regulation in β-thalassemia: heterogeneity, modifiers and therapeutic approaches.
    Sripichai O; Fucharoen S
    Expert Rev Hematol; 2016 Dec; 9(12):1129-1137. PubMed ID: 27801605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic association studies in β-hemoglobinopathies.
    Thein SL
    Hematology Am Soc Hematol Educ Program; 2013; 2013():354-61. PubMed ID: 24319204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmentation by erythropoietin of the fetal-hemoglobin response to hydroxyurea in sickle cell disease.
    Rodgers GP; Dover GJ; Uyesaka N; Noguchi CT; Schechter AN; Nienhuis AW
    N Engl J Med; 1993 Jan; 328(2):73-80. PubMed ID: 7677965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the beta-globin disorders.
    Perrine SP; Ginder GD; Faller DV; Dover GH; Ikuta T; Witkowska HE; Cai SP; Vichinsky EP; Olivieri NF
    N Engl J Med; 1993 Jan; 328(2):81-6. PubMed ID: 7677966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological induction of fetal hemoglobin in sickle cell disease and beta-thalassemia.
    Atweh GF; Loukopoulos D
    Semin Hematol; 2001 Oct; 38(4):367-73. PubMed ID: 11605172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemoglobin switching's surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin.
    Bauer DE; Orkin SH
    Curr Opin Genet Dev; 2015 Aug; 33():62-70. PubMed ID: 26375765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of fetal hemoglobin in sickle cell anemia.
    Steinberg MH
    Hemoglobin; 2001 May; 25(2):195-211. PubMed ID: 11480781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alpha thalassemia changes erythrocyte heterogeneity in sickle cell disease.
    Noguchi CT; Dover GJ; Rodgers GP; Serjeant GR; Antonarakis SE; Anagnou NP; Higgs DR; Weatherall DJ; Schechter AN
    J Clin Invest; 1985 May; 75(5):1632-7. PubMed ID: 2581999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fetal hemoglobin silencing in humans.
    Oneal PA; Gantt NM; Schwartz JD; Bhanu NV; Lee YT; Moroney JW; Reed CH; Schechter AN; Luban NL; Miller JL
    Blood; 2006 Sep; 108(6):2081-6. PubMed ID: 16735596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyurea in sickle cell disease--a study of clinico-pharmacological efficacy in the Indian haplotype.
    Italia K; Jain D; Gattani S; Jijina F; Nadkarni A; Sawant P; Nair S; Mohanty D; Ghosh K; Colah R
    Blood Cells Mol Dis; 2009; 42(1):25-31. PubMed ID: 18954999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversing ontogeny.
    Bunn HF
    N Engl J Med; 1993 Jan; 328(2):129-31. PubMed ID: 7677964
    [No Abstract]   [Full Text] [Related]  

  • 17. Enhanced fetal hemoglobin production by phenylacetate and 4-phenylbutyrate in erythroid precursors derived from normal donors and patients with sickle cell anemia and beta-thalassemia.
    Fibach E; Prasanna P; Rodgers GP; Samid D
    Blood; 1993 Oct; 82(7):2203-9. PubMed ID: 7691251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual variation in the production and survival of F cells in sickle-cell disease.
    Dover GJ; Boyer SH; Charache S; Heintzelman K
    N Engl J Med; 1978 Dec; 299(26):1428-35. PubMed ID: 101847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fetal hemoglobin-containing cells have the same mean corpuscular hemoglobin as cells without fetal hemoglobin: a reciprocal relationship between gamma- and beta-globin gene expression in normal subjects and in those with high fetal hemoglobin production.
    Dover GJ; Boyer SH
    Blood; 1987 Apr; 69(4):1109-13. PubMed ID: 2435342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted fetal hemoglobin induction for treatment of beta hemoglobinopathies.
    Perrine SP; Pace BS; Faller DV
    Hematol Oncol Clin North Am; 2014 Apr; 28(2):233-48. PubMed ID: 24589264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.