These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 33632737)
1. Transient Hyperintensity of the Infant Thyroid Gland on T1-Weighted MR Imaging: Correlation with Postnatal Age, Gestational Age, and Signal Intensity of the Pituitary Gland. Maki H; Nakagawa M; Kagaya R; Kumazawa S; Matsumoto K; Hatano M; Miyake Y; Sugihara W; Shibamoto Y AJNR Am J Neuroradiol; 2021 May; 42(5):955-960. PubMed ID: 33632737 [TBL] [Abstract][Full Text] [Related]
2. T1 signal intensity and height of the anterior pituitary in neonates: correlation with postnatal time. Kitamura E; Miki Y; Kawai M; Itoh H; Yura S; Mori N; Sugimura K; Togashi K AJNR Am J Neuroradiol; 2008 Aug; 29(7):1257-60. PubMed ID: 18417600 [TBL] [Abstract][Full Text] [Related]
3. Age related signal changes of the pituitary stalk on thin-slice magnetic resonance imaging in infants. Okazaki T; Niwa T; Suzuki K; Shibukawa S; Imai Y Brain Dev; 2019 Apr; 41(4):327-333. PubMed ID: 30514608 [TBL] [Abstract][Full Text] [Related]
4. Signal Intensity and Volume of Pituitary and Thyroid Glands in Preterm and Term Infants. Otani S; Fushimi Y; Iwanaga K; Tomotaki S; Yokota Y; Oshima S; Sakurama A; Wicaksono KP; Hinoda T; Sakata A; Nakajima S; Okada T; Takita J; Kawai M; Togashi K J Magn Reson Imaging; 2021 Apr; 53(4):1151-1161. PubMed ID: 33067897 [TBL] [Abstract][Full Text] [Related]
5. Structures Showing Negative Correlations of Signal Intensity with Postnatal Age on T Hori S; Taoka T; Ochi T; Miyasaka T; Sakamoto M; Takayama K; Wada T; Myochin K; Takahashi Y; Kichikawa K Magn Reson Med Sci; 2017 Oct; 16(4):325-331. PubMed ID: 28202853 [TBL] [Abstract][Full Text] [Related]
6. Transient hyperintensity in the subthalamic nucleus and globus pallidus of newborns on T1-weighted images. Taoka T; Aida N; Ochi T; Takahashi Y; Akashi T; Miyasaka T; Iwamura A; Sakamoto M; Kichikawa K AJNR Am J Neuroradiol; 2011; 32(6):1130-7. PubMed ID: 21511869 [TBL] [Abstract][Full Text] [Related]
7. MR Imaging of the Pituitary Gland and Postsphenoid Ossification in Fetal Specimens. Mehemed TM; Fushimi Y; Okada T; Kanagaki M; Yamamoto A; Okada T; Takakuwa T; Yamada S; Togashi K AJNR Am J Neuroradiol; 2016 Aug; 37(8):1523-7. PubMed ID: 27127005 [TBL] [Abstract][Full Text] [Related]
8. MR imaging of the pituitary gland in infants and children: changes in size, shape, and MR signal with growth and development. Tien RD; Kucharczyk J; Bessette J; Middleton M AJR Am J Roentgenol; 1992 May; 158(5):1151-4. PubMed ID: 1566682 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Fetal Thyroid with 3D Gradient Echo T Fujii S; Nagaishi J; Mukuda N; Kaneda S; Inoue C; Fukunaga T; Ogawa T Magn Reson Med Sci; 2017 Jul; 16(3):203-208. PubMed ID: 28025468 [TBL] [Abstract][Full Text] [Related]
10. [Logistic regression analysis on risk factors of neonates T1WI hyperintensity at globus pallidus and subthalamic nucleus]. Jia G; Gong J; Ding H; Li A; Wang J; Xu J Zhonghua Yi Xue Za Zhi; 2015 Apr; 95(15):1171-4. PubMed ID: 26081363 [TBL] [Abstract][Full Text] [Related]
12. Prominent signal intensity of T1/T2 prolongation in subcortical white matter of the anterior temporal region on conventional screening MRI of late preterm infants with normal development. Wuttikul C; Taoka T; Akashi T; Nakagawa H; Miyasaka T; Sakamoto M; Takayama K; Wada T; Kitano S; Takahama J; Marugami N; Kichikawa K Magn Reson Imaging; 2008 Dec; 26(10):1374-80. PubMed ID: 18562147 [TBL] [Abstract][Full Text] [Related]
13. Normal pituitary gland: changes in shape, size, and signal intensity during the 1st year of life at MR imaging. Cox TD; Elster AD Radiology; 1991 Jun; 179(3):721-4. PubMed ID: 2027981 [TBL] [Abstract][Full Text] [Related]
14. Maturation of the pituitary-thyroid axis during the perinatal period. Hashimoto H; Sato T; Horita S; Kubo M; Ohki T Endocrinol Jpn; 1991 Apr; 38(2):151-7. PubMed ID: 1752233 [TBL] [Abstract][Full Text] [Related]
15. Pituitary gland height evaluated with magnetic resonance imaging in premature twins: the impact of growth and sex. Argyropoulou MI; Xydis V; Astrakas LG; Drougia A; Styliara EI; Kiortsis DN; Giapros V; Kanaka-Gantenbein C Pediatr Radiol; 2024 May; 54(5):787-794. PubMed ID: 38386022 [TBL] [Abstract][Full Text] [Related]
16. Pituitary gland signal in pre-term infants during the first year of life: an MRI study. Argyropoulou MI; Xydis V; Kiortsis DN; Pantou K; Zikou A; Efremidis SC; Andronikou S Neuroradiology; 2004 Dec; 46(12):1031-5. PubMed ID: 15551093 [TBL] [Abstract][Full Text] [Related]
17. Thyroid gland volumes in premature infants using serial ultrasounds. Khan SS; Hong-McAtee I; Kriss VM; Stevens S; Crawford T; Hanna M; Bada H; Desai N J Perinatol; 2018 Oct; 38(10):1353-1358. PubMed ID: 30061589 [TBL] [Abstract][Full Text] [Related]
18. The pituitary gland: changes on MR images during the 1st year after delivery. Miki Y; Kataoka ML; Shibata T; Haque TL; Kanagaki M; Shimono T; Okada T; Hiraga A; Nishizawa S; Ueda H; Rahman M; Konishi J Radiology; 2005 Jun; 235(3):999-1004. PubMed ID: 15833983 [TBL] [Abstract][Full Text] [Related]
19. Normal MR appearance of the pituitary gland in the first 2 years of life. Dietrich RB; Lis LE; Greensite FS; Pitt D AJNR Am J Neuroradiol; 1995 Aug; 16(7):1413-9. PubMed ID: 7484625 [TBL] [Abstract][Full Text] [Related]
20. The bright pituitary gland--a normal MR appearance in infancy. Wolpert SM; Osborne M; Anderson M; Runge VM AJNR Am J Neuroradiol; 1988; 9(1):1-3. PubMed ID: 3124560 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]