These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33633181)

  • 21. Magnetic domain interactions of Fe
    Fuentes-García JA; Diaz-Cano AI; Guillen-Cervantes A; Santoyo-Salazar J
    Sci Rep; 2018 Mar; 8(1):5096. PubMed ID: 29572514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Element-Specific Study of Magnetic Anisotropy and Hardening in SmCo
    Gkouzia G; Günzing D; Xie R; Weßels T; Kovács A; N'Diaye AT; Major M; Palakkal JP; Dunin-Borkowski RE; Wende H; Zhang H; Ollefs K; Alff L
    Inorg Chem; 2023 Oct; 62(40):16354-16361. PubMed ID: 37739403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Ni and Cu Residuals on the Magnetic Properties and Microstructure of SmCo
    Mehmood MF; Eldosouky A; Žužek Rožman K; Šturm S
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature.
    Limaye MV; Singh SB; Date SK; Kothari D; Reddy VR; Gupta A; Sathe V; Choudhary RJ; Kulkarni SK
    J Phys Chem B; 2009 Jul; 113(27):9070-6. PubMed ID: 19522478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Zr, V, Nb, Mo, and Ta substitutions on magnetic properties and microstructure of melt-spun SmCo
    Fukuzaki T; Iwane H; Abe K; Doi T; Tamura R; Oikawa T
    J Appl Phys; 2014 May; 115(17):17A760. PubMed ID: 24753631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hard Magnetic Properties and the Features of Nanostructure of High-Temperature Sm-Co-Fe-Cu-Zr Magnet with Abnormal Temperature Dependence of Coercivity.
    Golovnia OA; Popov AG; Mushnikov NV; Protasov AV; Pradeep KG; Ogurtsov AV; Taranov DV; Tishin AM
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct chemical synthesis of L1(0)-FePtAu nanoparticles with high coercivity.
    Yu Y; Mukherjee P; Tian Y; Li XZ; Shield JE; Sellmyer DJ
    Nanoscale; 2014 Oct; 6(20):12050-5. PubMed ID: 25189100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A general strategy for synthesizing high-coercivity L1
    Lei W; Yu Y; Yang W; Feng M; Li H
    Nanoscale; 2017 Sep; 9(35):12855-12861. PubMed ID: 28849847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uniform Ni/SiO2@Au magnetic hollow microspheres: rational design and excellent catalytic performance in 4-nitrophenol reduction.
    Zhang S; Gai S; He F; Dai Y; Gao P; Li L; Chen Y; Yang P
    Nanoscale; 2014 Jun; 6(12):7025-32. PubMed ID: 24841736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Earthicle: The Design of a Conceptually New Type of Particle.
    Uskoković V; Pernal S; Wu VM
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1305-1321. PubMed ID: 28009506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemically synthesized anisotropic SmCo
    Ma Z; Liang J; Ma W; Cong L; Wu Q; Yue M
    Nanoscale; 2019 Jul; 11(26):12484-12488. PubMed ID: 31225559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High performance hot-deformed Nd-Fe-B magnets (Review).
    Hioki K
    Sci Technol Adv Mater; 2021 Jan; 22(1):72-84. PubMed ID: 33551682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gas phase preparation of spherical core-shell α''-Fe16N2/SiO2 magnetic nanoparticles.
    Zulhijah R; Dani Nandiyanto AB; Ogi T; Iwaki T; Nakamura K; Okuyama K
    Nanoscale; 2014 Jun; 6(12):6487-91. PubMed ID: 24834445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinspired One-Step Synthesis of Pomegranate-like Silica@Gold Nanoparticles with Surface-Enhanced Raman Scattering Activity.
    Zhou S; Maeda M; Tanabe E; Kubo M; Shimada M
    Langmuir; 2020 Mar; 36(10):2553-2562. PubMed ID: 32097558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glass-Ceramic Synthesis of Cr-Substituted Strontium Hexaferrite Nanoparticles with Enhanced Coercivity.
    Trusov LA; Sleptsova AE; Duan J; Gorbachev EA; Kozlyakova ES; Anokhin EO; Eliseev AA; Karpov MA; Vasiliev AV; Brylev OA; Kazin PE
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33916445
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High coercivity Pr
    Shang X; Tu H; Zhang J; Ni B; Wang L; Wang M; Wu C; Zhao Z
    RSC Adv; 2021 Mar; 11(20):12315-12320. PubMed ID: 35423750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnetic spin exchange interaction in SmCo
    Kim CW; Kim IH; Kang YS
    J Colloid Interface Sci; 2021 May; 589():157-165. PubMed ID: 33460847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correlation between size, shape and magnetic anisotropy of CoFe
    Das A; Kumar Bestha K; Bongurala P; Gorige V
    Nanotechnology; 2020 Aug; 31(33):335716. PubMed ID: 32374297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gas-phase self-assembly of uniform silica nanostructures decorated and doped with silver nanoparticles.
    Lai CS; Chen YC; Wang HF; Ho HC; Ho RM; Tsai DH
    Nanotechnology; 2017 Jan; 28(3):035602. PubMed ID: 27928994
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tailoring magnetism at the nanometer scale in SmCo5 amorphous films.
    Moubah R; Magnus F; Östman E; Muhammad Y; Arnalds UB; Ahlberg M; Hjörvarsson B; Andersson G
    J Phys Condens Matter; 2013 Oct; 25(41):416004. PubMed ID: 24047961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.