These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 33633216)
1. The dominance model for heterosis explains culm length genetics in a hybrid sorghum variety. Hashimoto S; Wake T; Nakamura H; Minamiyama M; Araki-Nakamura S; Ohmae-Shinohara K; Koketsu E; Okamura S; Miura K; Kawaguchi H; Kasuga S; Sazuka T Sci Rep; 2021 Feb; 11(1):4532. PubMed ID: 33633216 [TBL] [Abstract][Full Text] [Related]
2. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Li X; Li X; Fridman E; Tesso TT; Yu J Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11823-8. PubMed ID: 26351684 [TBL] [Abstract][Full Text] [Related]
3. Main Effect QTL with Dominance Determines Heterosis for Dynamic Plant Height in Upland Cotton. Shang L; Ma L; Wang Y; Su Y; Wang X; Li Y; Abduweli A; Cai S; Liu F; Wang K; Hua J G3 (Bethesda); 2016 Oct; 6(10):3373-3379. PubMed ID: 27565885 [TBL] [Abstract][Full Text] [Related]
4. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Li D; Huang Z; Song S; Xin Y; Mao D; Lv Q; Zhou M; Tian D; Tang M; Wu Q; Liu X; Chen T; Song X; Fu X; Zhao B; Liang C; Li A; Liu G; Li S; Hu S; Cao X; Yu J; Yuan L; Chen C; Zhu L Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6026-E6035. PubMed ID: 27663737 [TBL] [Abstract][Full Text] [Related]
5. Heterotic trait locus (HTL) mapping identifies intra-locus interactions that underlie reproductive hybrid vigor in Sorghum bicolor. Ben-Israel I; Kilian B; Nida H; Fridman E PLoS One; 2012; 7(6):e38993. PubMed ID: 22761720 [TBL] [Abstract][Full Text] [Related]
6. Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice. Luo X; Fu Y; Zhang P; Wu S; Tian F; Liu J; Zhu Z; Yang J; Sun C J Integr Plant Biol; 2009 Apr; 51(4):393-408. PubMed ID: 21452591 [TBL] [Abstract][Full Text] [Related]
7. Genomic architecture of heterosis for yield traits in rice. Huang X; Yang S; Gong J; Zhao Q; Feng Q; Zhan Q; Zhao Y; Li W; Cheng B; Xia J; Chen N; Huang T; Zhang L; Fan D; Chen J; Zhou C; Lu Y; Weng Q; Han B Nature; 2016 Sep; 537(7622):629-633. PubMed ID: 27602511 [TBL] [Abstract][Full Text] [Related]
8. Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton. Li C; Zhao T; Yu H; Li C; Deng X; Dong Y; Zhang F; Zhang Y; Mei L; Chen J; Zhu S BMC Genomics; 2018 Dec; 19(1):910. PubMed ID: 30541432 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide meta-analysis of maize heterosis reveals the potential role of additive gene expression at pericentromeric loci. Thiemann A; Fu J; Seifert F; Grant-Downton RT; Schrag TA; Pospisil H; Frisch M; Melchinger AE; Scholten S BMC Plant Biol; 2014 Apr; 14():88. PubMed ID: 24693880 [TBL] [Abstract][Full Text] [Related]
10. Genome Sequence and QTL Analyses Using Backcross Recombinant Inbred Lines (BILs) and BILF Yu Y; Zhu M; Cui Y; Liu Y; Li Z; Jiang N; Xu Z; Xu Q; Sui G Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991733 [No Abstract] [Full Text] [Related]
11. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). Yi Q; Liu Y; Hou X; Zhang X; Li H; Zhang J; Liu H; Hu Y; Yu G; Li Y; Wang Y; Huang Y BMC Plant Biol; 2019 Sep; 19(1):392. PubMed ID: 31500559 [TBL] [Abstract][Full Text] [Related]
13. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Li L; Lu K; Chen Z; Mu T; Hu Z; Li X Genetics; 2008 Nov; 180(3):1725-42. PubMed ID: 18791236 [TBL] [Abstract][Full Text] [Related]
14. Cumulative and different genetic effects contributed to yield heterosis using maternal and paternal backcross populations in Upland cotton. Ma L; Wang Y; Ijaz B; Hua J Sci Rep; 2019 Mar; 9(1):3984. PubMed ID: 30850683 [TBL] [Abstract][Full Text] [Related]
15. Dominance and epistasis are the main contributors to heterosis for plant height in rice. Shen G; Zhan W; Chen H; Xing Y Plant Sci; 2014 Feb; 215-216():11-8. PubMed ID: 24388510 [TBL] [Abstract][Full Text] [Related]
16. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Luo LJ; Li ZK; Mei HW; Shu QY; Tabien R; Zhong DB; Ying CS; Stansel JW; Khush GS; Paterson AH Genetics; 2001 Aug; 158(4):1755-71. PubMed ID: 11514460 [TBL] [Abstract][Full Text] [Related]
17. High-resolution bin-based linkage mapping uncovers the genetic architecture and heterosis-related loci of plant height in indica-japonica derived populations. Kong W; Deng X; Yang J; Zhang C; Sun T; Ji W; Zhong H; Fu X; Li Y Plant J; 2022 May; 110(3):814-827. PubMed ID: 35165965 [TBL] [Abstract][Full Text] [Related]
18. Hybridity has a greater effect than paternal genome dosage on heterosis in sugar beet (Beta vulgaris). Hallahan BF; Fernandez-Tendero E; Fort A; Ryder P; Dupouy G; Deletre M; Curley E; Brychkova G; Schulz B; Spillane C BMC Plant Biol; 2018 Jun; 18(1):120. PubMed ID: 29907096 [TBL] [Abstract][Full Text] [Related]
19. Genomewide mapping reveals a combination of different genetic effects causing the genetic basis of heterosis in two elite rice hybrids. Li L; He X; Zhang H; Wang Z; Sun C; Mou T; Li X; Zhang Y; Hu Z J Genet; 2015 Jun; 94(2):261-70. PubMed ID: 26174673 [TBL] [Abstract][Full Text] [Related]
20. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Li ZK; Luo LJ; Mei HW; Wang DL; Shu QY; Tabien R; Zhong DB; Ying CS; Stansel JW; Khush GS; Paterson AH Genetics; 2001 Aug; 158(4):1737-53. PubMed ID: 11514459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]