BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33633244)

  • 1. The effect of deformation of absorbing scatterers on Mie-type signatures in infrared microspectroscopy.
    Brandsrud MA; Blümel R; Solheim JH; Kohler A
    Sci Rep; 2021 Feb; 11(1):4675. PubMed ID: 33633244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the coupling of dielectric spherical particles on signatures in infrared microspectroscopy.
    Kong B; Brandsrud MA; Solheim JH; Nedrebø I; Blümel R; Kohler A
    Sci Rep; 2022 Aug; 12(1):13327. PubMed ID: 35922455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mie scatter corrections in single cell infrared microspectroscopy.
    Konevskikh T; Lukacs R; Blümel R; Ponossov A; Kohler A
    Faraday Discuss; 2016 Jun; 187():235-57. PubMed ID: 27034998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mie-type scattering and non-Beer-Lambert absorption behavior of human cells in infrared microspectroscopy.
    Mohlenhoff B; Romeo M; Diem M; Wood BR
    Biophys J; 2005 May; 88(5):3635-40. PubMed ID: 15749767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved algorithm for fast resonant Mie scatter correction of infrared spectra of cells and tissues.
    Konevskikh T; Lukacs R; Kohler A
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28792669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domes and semi-capsules as model systems for infrared microspectroscopy of biological cells.
    Solheim JH; Brandsrud MA; Kong B; Banyasz A; Borondics F; Micouin G; Lossius S; Sulé-Suso J; Blümel R; Kohler A
    Sci Rep; 2023 Feb; 13(1):3165. PubMed ID: 36823297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating and correcting mie scattering in synchrotron-based microscopic fourier transform infrared spectra by extended multiplicative signal correction.
    Kohler A; Sulé-Suso J; Sockalingum GD; Tobin M; Bahrami F; Yang Y; Pijanka J; Dumas P; Cotte M; van Pittius DG; Parkes G; Martens H
    Appl Spectrosc; 2008 Mar; 62(3):259-66. PubMed ID: 18339231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of Mie ripples in the synchrotron Fourier transform infrared spectra of spheroidal pollen grains.
    Blümel R; Lukacs R; Zimmermann B; Bağcıoğlu M; Kohler A
    J Opt Soc Am A Opt Image Sci Vis; 2018 Oct; 35(10):1769-1779. PubMed ID: 30462098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonant Mie scattering in infrared spectroscopy of biological materials--understanding the 'dispersion artefact'.
    Bassan P; Byrne HJ; Bonnier F; Lee J; Dumas P; Gardner P
    Analyst; 2009 Aug; 134(8):1586-93. PubMed ID: 20448924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An open-source code for Mie extinction extended multiplicative signal correction for infrared microscopy spectra of cells and tissues.
    Solheim JH; Gunko E; Petersen D; Großerüschkamp F; Gerwert K; Kohler A
    J Biophotonics; 2019 Aug; 12(8):e201800415. PubMed ID: 30793501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimising contributions from scattering in infrared spectra by means of an integrating sphere.
    Dazzi A; Deniset-Besseau A; Lasch P
    Analyst; 2013 Jul; 138(14):4191-201. PubMed ID: 23757480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RMieS-EMSC correction for infrared spectra of biological cells: extension using full Mie theory and GPU computing.
    Bassan P; Kohler A; Martens H; Lee J; Jackson E; Lockyer N; Dumas P; Brown M; Clarke N; Gardner P
    J Biophotonics; 2010 Aug; 3(8-9):609-20. PubMed ID: 20414907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of absorbance spectra of micrometer-sized biological and inanimate particles.
    Lukacs R; Blümel R; Zimmerman B; Bağcıoğlu M; Kohler A
    Analyst; 2015 May; 140(9):3273-84. PubMed ID: 25797528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared refractive index dispersion of polymethyl methacrylate spheres from Mie ripples in Fourier-transform infrared microscopy extinction spectra.
    Blümel R; Bağcioğlu M; Lukacs R; Kohler A
    J Opt Soc Am A Opt Image Sci Vis; 2016 Sep; 33(9):1687-96. PubMed ID: 27607489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging.
    Firbank M; Oda M; Delpy DT
    Phys Med Biol; 1995 May; 40(5):955-61. PubMed ID: 7652018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography.
    Wang X; Pogue BW; Jiang S; Dehghani H; Song X; Srinivasan S; Brooksby BA; Paulsen KD; Kogel C; Poplack SP; Wells WA
    J Biomed Opt; 2006; 11(4):041106. PubMed ID: 16965134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invisible Mie scatterer.
    Zheng K; Zhang Z; Qin F; Xu Y
    Opt Lett; 2021 Oct; 46(20):5248-5251. PubMed ID: 34653164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo.
    Wang X; Pogue BW; Jiang S; Song X; Paulsen KD; Kogel C; Poplack SP; Wells WA
    J Biomed Opt; 2005; 10(5):051704. PubMed ID: 16292956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
    Jain PK; Lee KS; El-Sayed IH; El-Sayed MA
    J Phys Chem B; 2006 Apr; 110(14):7238-48. PubMed ID: 16599493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the role of interference in laser-based mid-infrared widefield microspectroscopy.
    Schönhals A; Kröger-Lui N; Pucci A; Petrich W
    J Biophotonics; 2018 Jul; 11(7):e201800015. PubMed ID: 29573178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.