These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 33633489)
1. Revisiting imperfect interface laws for two-dimensional elastodynamics. Pham K; Maurel A; Marigo JJ Proc Math Phys Eng Sci; 2021 Jan; 477(2245):20200519. PubMed ID: 33633489 [TBL] [Abstract][Full Text] [Related]
2. Effective Spring Stiffness for a Planar Periodic Array of Collinear Cracks at an Interface between Two Dissimilar Isotropic Materials. Lekesiz H; Katsube N; Rokhlin SI; Seghi RR Mech Mater; 2011 Feb; 43(2):87-98. PubMed ID: 23710104 [TBL] [Abstract][Full Text] [Related]
3. High-frequency homogenization in periodic media with imperfect interfaces. Assier RC; Touboul M; Lombard B; Bellis C Proc Math Phys Eng Sci; 2020 Dec; 476(2244):20200402. PubMed ID: 33402874 [TBL] [Abstract][Full Text] [Related]
4. In-plane time-harmonic elastic wave motion and resonance phenomena in a layered phononic crystal with periodic cracks. Golub MV; Zhang C J Acoust Soc Am; 2015 Jan; 137(1):238-52. PubMed ID: 25618055 [TBL] [Abstract][Full Text] [Related]
5. Effective spring stiffness for a periodic array of interacting coplanar penny-shaped cracks at an interface between two dissimilar isotropic materials. Lekesiz H; Katsube N; Rokhlin SI; Seghi RR Int J Solids Struct; 2013 Aug; 50(18):2817-2828. PubMed ID: 27175036 [TBL] [Abstract][Full Text] [Related]
6. Homogenization models for thin rigid structured surfaces and films. Marigo JJ; Maurel A J Acoust Soc Am; 2016 Jul; 140(1):260. PubMed ID: 27475151 [TBL] [Abstract][Full Text] [Related]
7. Two-scale homogenization to determine effective parameters of thin metallic-structured films. Marigo JJ; Maurel A Proc Math Phys Eng Sci; 2016 Aug; 472(2192):20160068. PubMed ID: 27616916 [TBL] [Abstract][Full Text] [Related]
8. Effective Boundary Conditions and Stochastic Crack Distribution for Modelling Guided Waves Scattering by a Partially Closed Interfacial Delamination in a Laminate. Golub MV; Doroshenko OV; Gu Y Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984294 [TBL] [Abstract][Full Text] [Related]
9. Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface. Zhang Z; Nagy PB; Hassan W Ultrasonics; 2016 Feb; 65():165-76. PubMed ID: 26482394 [TBL] [Abstract][Full Text] [Related]
10. Random Stiffness Tensor of Particulate Composites with Hyper-Elastic Matrix and Imperfect Interface. Sokołowski D; Kamiński M Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772202 [TBL] [Abstract][Full Text] [Related]
11. Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact. Pecorari C J Acoust Soc Am; 2003 Jun; 113(6):3065-72. PubMed ID: 12822778 [TBL] [Abstract][Full Text] [Related]
12. Asymptotic analysis of in-plane dynamic problems for elastic media with rigid clusters of small inclusions. Nieves MJ; Movchan AB Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2237):20210392. PubMed ID: 36209813 [TBL] [Abstract][Full Text] [Related]
13. Boundary integral equations in elastodynamics of interface cracks. Menshykov OV; Guz IA; Menshykov VA Philos Trans A Math Phys Eng Sci; 2008 May; 366(1871):1835-9. PubMed ID: 18218600 [TBL] [Abstract][Full Text] [Related]
14. Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions. Angot P; Goyeau B; Ochoa-Tapia JA Phys Rev E; 2017 Jun; 95(6-1):063302. PubMed ID: 28709346 [TBL] [Abstract][Full Text] [Related]
15. A stable, unified model for resonant Faraday cages. Delourme B; Lunéville E; Marigo JJ; Maurel A; Mercier JF; Pham K Proc Math Phys Eng Sci; 2021 Jan; 477(2245):20200668. PubMed ID: 33642929 [TBL] [Abstract][Full Text] [Related]
16. Numerical simulation and visualization of elastic waves using mass-spring lattice model. Yim H; Sohn Y IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):549-58. PubMed ID: 18238581 [TBL] [Abstract][Full Text] [Related]
17. Design of Two-Dimensional Transient Circular Thermal Cloaks with Imperfect Interfaces. Lin JH; Chen T Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984181 [TBL] [Abstract][Full Text] [Related]
18. Modelling nonlinearity of guided ultrasonic waves in fatigued materials using a nonlinear local interaction simulation approach and a spring model. Radecki R; Su Z; Cheng L; Packo P; Staszewski WJ Ultrasonics; 2018 Mar; 84():272-289. PubMed ID: 29179158 [TBL] [Abstract][Full Text] [Related]
19. A circular inclusion with inhomogeneous non-slip imperfect interface in harmonic materials. McArthur DR; Sudak LJ Proc Math Phys Eng Sci; 2016 Jun; 472(2190):20160285. PubMed ID: 27436990 [TBL] [Abstract][Full Text] [Related]
20. Frontal waves and transmissions for temporal laminates and imperfect chiral interfaces. Movchan AB; Movchan NV; Jones IS; Milton GW; Nguyen HM Philos Trans A Math Phys Eng Sci; 2022 Sep; 380(2231):20210385. PubMed ID: 35858077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]