These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

742 related articles for article (PubMed ID: 33633531)

  • 1. Non-linear Memristive Synaptic Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks.
    Brivio S; Ly DRB; Vianello E; Spiga S
    Front Neurosci; 2021; 15():580909. PubMed ID: 33633531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extended memory lifetime in spiking neural networks employing memristive synapses with nonlinear conductance dynamics.
    Brivio S; Conti D; Nair MV; Frascaroli J; Covi E; Ricciardi C; Indiveri G; Spiga S
    Nanotechnology; 2019 Jan; 30(1):015102. PubMed ID: 30378572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised Learning on Resistive Memory Array Based Spiking Neural Networks.
    Guo Y; Wu H; Gao B; Qian H
    Front Neurosci; 2019; 13():812. PubMed ID: 31447634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thousands of conductance levels in memristors integrated on CMOS.
    Rao M; Tang H; Wu J; Song W; Zhang M; Yin W; Zhuo Y; Kiani F; Chen B; Jiang X; Liu H; Chen HY; Midya R; Ye F; Jiang H; Wang Z; Wu M; Hu M; Wang H; Xia Q; Ge N; Li J; Yang JJ
    Nature; 2023 Mar; 615(7954):823-829. PubMed ID: 36991190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: from mitigation to exploitation.
    Payvand M; Nair MV; Müller LK; Indiveri G
    Faraday Discuss; 2019 Feb; 213(0):487-510. PubMed ID: 30357205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices.
    Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH
    Front Neurosci; 2020; 14():423. PubMed ID: 32733180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Necessary conditions for STDP-based pattern recognition learning in a memristive spiking neural network.
    Demin VA; Nekhaev DV; Surazhevsky IA; Nikiruy KE; Emelyanov AV; Nikolaev SN; Rylkov VV; Kovalchuk MV
    Neural Netw; 2021 Feb; 134():64-75. PubMed ID: 33291017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing.
    Wang R; Shi T; Zhang X; Wang W; Wei J; Lu J; Zhao X; Wu Z; Cao R; Long S; Liu Q; Liu M
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights.
    Emelyanov AV; Nikiruy KE; Serenko AV; Sitnikov AV; Presnyakov MY; Rybka RB; Sboev AG; Rylkov VV; Kashkarov PK; Kovalchuk MV; Demin VA
    Nanotechnology; 2020 Jan; 31(4):045201. PubMed ID: 31578002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning.
    Covi E; Brivio S; Serb A; Prodromakis T; Fanciulli M; Spiga S
    Front Neurosci; 2016; 10():482. PubMed ID: 27826226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A compound memristive synapse model for statistical learning through STDP in spiking neural networks.
    Bill J; Legenstein R
    Front Neurosci; 2014; 8():412. PubMed ID: 25565943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial Properties of STDP in a Self-Learning Spiking Neural Network Enable Controlling a Mobile Robot.
    Lobov SA; Mikhaylov AN; Shamshin M; Makarov VA; Kazantsev VB
    Front Neurosci; 2020; 14():88. PubMed ID: 32174804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 510 μW 0.738-mm
    Fang C; Wang C; Zhao S; Tian F; Yang J; Sawan M
    IEEE Trans Biomed Circuits Syst; 2023 Jun; 17(3):507-520. PubMed ID: 37224372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memristive and CMOS Devices for Neuromorphic Computing.
    Milo V; Malavena G; Monzio Compagnoni C; Ielmini D
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges.
    Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S
    Front Neurosci; 2020; 14():634. PubMed ID: 32670012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses.
    Nandakumar SR; Boybat I; Le Gallo M; Eleftheriou E; Sebastian A; Rajendran B
    Sci Rep; 2020 May; 10(1):8080. PubMed ID: 32415108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Soft-Pruning Method Applied During Training of Spiking Neural Networks for In-memory Computing Applications.
    Shi Y; Nguyen L; Oh S; Liu X; Kuzum D
    Front Neurosci; 2019; 13():405. PubMed ID: 31080402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.