These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33633701)

  • 21. Dissimilatory bioreduction of iron(III) oxides by Shewanella loihica under marine sediment conditions.
    Benaiges-Fernandez R; Palau J; Offeddu FG; Cama J; Urmeneta J; Soler JM; Dold B
    Mar Environ Res; 2019 Oct; 151():104782. PubMed ID: 31514974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NanoSIMS imaging of extracellular electron transport processes during microbial iron(III) reduction.
    Newsome L; Lopez Adams R; Downie HF; Moore KL; Lloyd JR
    FEMS Microbiol Ecol; 2018 Aug; 94(8):. PubMed ID: 29878195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides.
    Whitaker AH; Peña J; Amor M; Duckworth OW
    Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Shewanella Isolate Enhances Corrosion by Using Metallic Iron as the Electron Donor with Fumarate as the Electron Acceptor.
    Philips J; Van den Driessche N; De Paepe K; Prévoteau A; Gralnick JA; Arends JBA; Rabaey K
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30054363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide.
    Aryal N; Tremblay PL; Lizak DM; Zhang T
    Bioresour Technol; 2017 Jun; 233():184-190. PubMed ID: 28279911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous microbial reduction of iron(III) and arsenic(V) in suspensions of hydrous ferric oxide.
    Campbell KM; Malasarn D; Saltikov CW; Newman DK; Hering JG
    Environ Sci Technol; 2006 Oct; 40(19):5950-5. PubMed ID: 17051784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extracellular electron transfer to Fe(III) oxides by the hyperthermophilic archaeon Geoglobus ahangari via a direct contact mechanism.
    Manzella MP; Reguera G; Kashefi K
    Appl Environ Microbiol; 2013 Aug; 79(15):4694-700. PubMed ID: 23728807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics.
    Bligh MW; Maheshwari P; David Waite T
    Water Res; 2017 Nov; 124():341-352. PubMed ID: 28780358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas.
    Sharif MU; Davis RK; Steele KF; Kim B; Hays PD; Kresse TM; Fazio JA
    J Contam Hydrol; 2008 Jul; 99(1-4):49-67. PubMed ID: 18486990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Shewanella oneidensis on the Kinetics of Fe(II)-Catalyzed Transformation of Ferrihydrite to Crystalline Iron Oxides.
    Xiao W; Jones AM; Li X; Collins RN; Waite TD
    Environ Sci Technol; 2018 Jan; 52(1):114-123. PubMed ID: 29205031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of Mineral Substrate Acquisition in a Thermoacidophile.
    Amenabar MJ; Boyd ES
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient O
    Wilmoth JL; Moran MA; Thompson A
    Microbiome; 2018 Oct; 6(1):189. PubMed ID: 30352628
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.
    Dippon U; Pantke C; Porsch K; Larese-Casanova P; Kappler A
    Environ Sci Technol; 2012 Jun; 46(12):6556-65. PubMed ID: 22642801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic humus and Fe(III) reduction and electron transport pathway by a novel humus-reducing bacterium, Thauera humireducens SgZ-1.
    Ma C; Yu Z; Lu Q; Zhuang L; Zhou SG
    Appl Microbiol Biotechnol; 2015 Apr; 99(8):3619-28. PubMed ID: 25503315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron transfer from humic substances to biogenic and abiogenic Fe(III) oxyhydroxide minerals.
    Piepenbrock A; Schröder C; Kappler A
    Environ Sci Technol; 2014; 48(3):1656-64. PubMed ID: 24400782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sorption of copper and phosphate to diverse biogenic iron (oxyhydr)oxide deposits.
    Field HR; Whitaker AH; Henson JA; Duckworth OW
    Sci Total Environ; 2019 Dec; 697():134111. PubMed ID: 31487593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrite reduction with hydrous ferric oxide and Fe(II): stoichiometry, rate, and mechanism.
    Tai YL; Dempsey BA
    Water Res; 2009 Feb; 43(2):546-52. PubMed ID: 19081595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reductive Dissolution of Fe(III) (Hydr)oxides by Cysteine: Kinetics and Mechanism.
    Amirbahman A; Sigg L; Gunten U
    J Colloid Interface Sci; 1997 Oct; 194(1):194-206. PubMed ID: 9367598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Schwertmannite transformation via direct or indirect electron transfer by a sulfate reducing enrichment culture.
    Zeng Y; Wang H; Guo C; Wan J; Fan C; Reinfelder JR; Lu G; Wu F; Huang W; Dang Z
    Environ Pollut; 2018 Nov; 242(Pt A):738-748. PubMed ID: 30031307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.