These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3363372)

  • 1. Synaptic rearrangement during postembryonic development in the cricket.
    Chiba A; Shepherd D; Murphey RK
    Science; 1988 May; 240(4854):901-5. PubMed ID: 3363372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitatory influence of wind-sensitive local interneurons on an ascending interneuron in the cricket cercal sensory system.
    Bodnar DA
    J Comp Physiol A; 1993 May; 172(5):641-51. PubMed ID: 8331608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connectivity of identified central synapses in the cricket is normal following regeneration and blockade of presynaptic activity.
    Chiba A; Murphey RK
    J Neurobiol; 1991 Mar; 22(2):130-42. PubMed ID: 2030338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target neuron specification of short-term synaptic facilitation and depression in the cricket CNS.
    Killian KA; Murphey RK
    J Neurobiol; 1998 Dec; 37(4):700-14. PubMed ID: 9858269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and rearrangement of synapses in a growing insect.
    Kämper G
    Biol Chem Hoppe Seyler; 1994 Nov; 375(11):741-4. PubMed ID: 7695836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus.
    Pallas SL; Hoy RR
    J Comp Neurol; 1986 Jun; 248(3):348-59. PubMed ID: 3722462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The function of the cercal sensory system in escape behavior of the cave cricket Troglophilus neglectus Krauss.
    Schrader S
    Pflugers Arch; 2000; 439(3 Suppl):R187-9. PubMed ID: 10653187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postembryonic changes in the response properties of wind-sensitive giant interneurons in cricket.
    Matsuura T; Kanou M
    J Insect Physiol; 2003 Sep; 49(9):805-15. PubMed ID: 16256682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket.
    Ogawa H; Baba Y; Oka K
    J Neurobiol; 2001 Mar; 46(4):301-13. PubMed ID: 11180157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for postsynaptic neurons in determining presynaptic release properties in the cricket CNS: evidence for retrograde control of facilitation.
    Davis GW; Murphey RK
    J Neurosci; 1993 Sep; 13(9):3827-38. PubMed ID: 8366348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of synaptic depression rates in the cricket cercal sensory system.
    Hill AA; Jin P
    J Neurophysiol; 1998 Mar; 79(3):1277-85. PubMed ID: 9497409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transplantation of cricket sensory neurons to ectopic locations: arborizations and synaptic connections.
    Murphey RK; Bacon JP; Sakaguchi DS; Johnson SE
    J Neurosci; 1983 Apr; 3(4):659-72. PubMed ID: 6834102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional recoveries of giant interneurons in the early period after unilateral cercal ablation in the cricket Gryllus bimaculatus.
    Kanou M; Kuroishi H
    Zoolog Sci; 2008 Sep; 25(9):931-6. PubMed ID: 19267603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transplantation of neurons reveals processing areas and rules for synaptic connectivity in the cricket nervous system.
    Killian KA; Merritt DJ; Murphey RK
    J Neurobiol; 1993 Sep; 24(9):1187-206. PubMed ID: 8409977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state.
    Hedwig B
    J Neurophysiol; 2000 Feb; 83(2):712-22. PubMed ID: 10669487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of the cricket cercal sensory system: genetic and epigenetic control.
    Murphey RK; Chiba A
    J Neurobiol; 1990 Jan; 21(1):120-37. PubMed ID: 2181060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronous firing by specific pairs of cercal giant interneurons in crickets encodes wind direction.
    Yono O; Shimozawa T
    Biosystems; 2008 Sep; 93(3):218-25. PubMed ID: 18550269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomy and physiology of identified wind-sensitive local interneurons in the cricket cercal sensory system.
    Bodnar DA; Miller JP; Jacobs GA
    J Comp Physiol A; 1991 May; 168(5):553-64. PubMed ID: 1920156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendritic sprouting and compensatory synaptogenesis in an identified interneuron follow auditory deprivation in a cricket.
    Hoy RR; Nolen TG; Casaday GC
    Proc Natl Acad Sci U S A; 1985 Nov; 82(22):7772-6. PubMed ID: 3865195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synapse formation by sensory neurons after cross-species transplantation in crickets: the role of positional information.
    Kämper G; Murphey RK
    Dev Biol; 1987 Aug; 122(2):492-502. PubMed ID: 3036633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.