BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 33633739)

  • 21. Role of sphingolipids in arachidonic acid metabolism.
    Nakamura H; Murayama T
    J Pharmacol Sci; 2014; 124(3):307-12. PubMed ID: 24599139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Network Analysis of a Comprehensive Knowledge Repository Reveals a Dual Role for Ceramide in Alzheimer's Disease.
    Mizuno S; Ogishima S; Kitatani K; Kikuchi M; Tanaka H; Yaegashi N; Nakaya J
    PLoS One; 2016; 11(2):e0148431. PubMed ID: 26849355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The potential role for sphingolipids in neuropathogenesis of Alzheimer's disease].
    Alesenko AV
    Biomed Khim; 2013; 59(1):25-50. PubMed ID: 23650721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sphingolipids in lung growth and repair.
    Tibboel J; Reiss I; de Jongste JC; Post M
    Chest; 2014 Jan; 145(1):120-128. PubMed ID: 24394822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ceramide and Sphingosine-1-Phosphate in Neurodegenerative Disorders and Their Potential Involvement in Therapy.
    Tringali C; Giussani P
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resolution of inflammation, n-3 fatty acid supplementation and Alzheimer disease: A narrative review.
    Fraga VG; Carvalho MDG; Caramelli P; de Sousa LP; Gomes KB
    J Neuroimmunol; 2017 Sep; 310():111-119. PubMed ID: 28778434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N-AS-triggered SPMs are direct regulators of microglia in a model of Alzheimer's disease.
    Lee JY; Han SH; Park MH; Song IS; Choi MK; Yu E; Park CM; Kim HJ; Kim SH; Schuchman EH; Jin HK; Bae JS
    Nat Commun; 2020 May; 11(1):2358. PubMed ID: 32398649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of sphingosine-1-phosphate and ceramide-1-phosphate in calcium homeostasis.
    Hinkovska-Galcheva V; VanWay SM; Shanley TP; Kunkel RG
    Curr Opin Investig Drugs; 2008 Nov; 9(11):1192-205. PubMed ID: 18951299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiple roles for sphingolipids in steroid hormone biosynthesis.
    Lucki NC; Sewer MB
    Subcell Biochem; 2008; 49():387-412. PubMed ID: 18751920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sphingolipids in macroautophagy.
    Lavieu G; Scarlatti F; Sala G; Carpentier S; Levade T; Ghidoni R; Botti J; Codogno P
    Methods Mol Biol; 2008; 445():159-73. PubMed ID: 18425450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of ceramide and SEW 2871 in the transcription of enzymes involved in amyloid b precursor protein metabolism in an experimental model of Alzheimer's disease.
    Czubowicz K; Wójtowicz S; Wencel PL; Strosznajder RP
    Folia Neuropathol; 2018; 56(3):196-205. PubMed ID: 30509041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Therapeutic applications of bioactive sphingolipids in hematological malignancies.
    Ekiz HA; Baran Y
    Int J Cancer; 2010 Oct; 127(7):1497-506. PubMed ID: 20503271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha.
    Osawa Y; Uchinami H; Bielawski J; Schwabe RF; Hannun YA; Brenner DA
    J Biol Chem; 2005 Jul; 280(30):27879-87. PubMed ID: 15946935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuroinflammation in Alzheimer's Disease: Microglia, Molecular Participants and Therapeutic Choices.
    Wang H; Shen Y; Chuang H; Chiu C; Ye Y; Zhao L
    Curr Alzheimer Res; 2019; 16(7):659-674. PubMed ID: 31580243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the molecular approach of COX and LOX in Alzheimer's and Parkinson's disorder.
    Kumar A; Behl T; Jamwal S; Kaur I; Sood A; Kumar P
    Mol Biol Rep; 2020 Dec; 47(12):9895-9912. PubMed ID: 33263931
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of bioactive sphingolipids in physiology and pathology.
    Gomez-Larrauri A; Presa N; Dominguez-Herrera A; Ouro A; Trueba M; Gomez-Muñoz A
    Essays Biochem; 2020 Sep; 64(3):579-589. PubMed ID: 32579188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sphingosine 1-phosphate signalling in mammalian cells.
    Pyne S; Pyne NJ
    Biochem J; 2000 Jul; 349(Pt 2):385-402. PubMed ID: 10880336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of P2X7R in neuroinflammation and implications in Alzheimer's disease.
    Chen YH; Lin RR; Tao QQ
    Life Sci; 2021 Apr; 271():119187. PubMed ID: 33577858
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Omega-3 Fatty Acids Augment the Actions of Nuclear Receptor Agonists in a Mouse Model of Alzheimer's Disease.
    Casali BT; Corona AW; Mariani MM; Karlo JC; Ghosal K; Landreth GE
    J Neurosci; 2015 Jun; 35(24):9173-81. PubMed ID: 26085639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer's disease.
    Rangaraju S; Dammer EB; Raza SA; Rathakrishnan P; Xiao H; Gao T; Duong DM; Pennington MW; Lah JJ; Seyfried NT; Levey AI
    Mol Neurodegener; 2018 May; 13(1):24. PubMed ID: 29784049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.