These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Cholesterol Induces CD8 Ma X; Bi E; Lu Y; Su P; Huang C; Liu L; Wang Q; Yang M; Kalady MF; Qian J; Zhang A; Gupte AA; Hamilton DJ; Zheng C; Yi Q Cell Metab; 2019 Jul; 30(1):143-156.e5. PubMed ID: 31031094 [TBL] [Abstract][Full Text] [Related]
28. Reversal of T-cell exhaustion: Mechanisms and synergistic approaches. Hu Y; Zhang Y; Shi F; Yang R; Yan J; Han T; Guan L Int Immunopharmacol; 2024 Sep; 138():112571. PubMed ID: 38941674 [TBL] [Abstract][Full Text] [Related]
29. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Zhao Y; Shao Q; Peng G Cell Mol Immunol; 2020 Jan; 17(1):27-35. PubMed ID: 31853000 [TBL] [Abstract][Full Text] [Related]
30. Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer. Kim K; Park S; Park SY; Kim G; Park SM; Cho JW; Kim DH; Park YM; Koh YW; Kim HR; Ha SJ; Lee I Genome Med; 2020 Feb; 12(1):22. PubMed ID: 32111241 [TBL] [Abstract][Full Text] [Related]
31. Osr2 functions as a biomechanical checkpoint to aggravate CD8 Zhang J; Li J; Hou Y; Lin Y; Zhao H; Shi Y; Chen K; Nian C; Tang J; Pan L; Xing Y; Gao H; Yang B; Song Z; Cheng Y; Liu Y; Sun M; Linghu Y; Li J; Huang H; Lai Z; Zhou Z; Li Z; Sun X; Chen Q; Su D; Li W; Peng Z; Liu P; Chen W; Huang H; Chen Y; Xiao B; Ye L; Chen L; Zhou D Cell; 2024 Jun; 187(13):3409-3426.e24. PubMed ID: 38744281 [TBL] [Abstract][Full Text] [Related]
32. CD8 T Cell Exhaustion in Chronic Infection and Cancer: Opportunities for Interventions. Hashimoto M; Kamphorst AO; Im SJ; Kissick HT; Pillai RN; Ramalingam SS; Araki K; Ahmed R Annu Rev Med; 2018 Jan; 69():301-318. PubMed ID: 29414259 [TBL] [Abstract][Full Text] [Related]
33. Common phenotypic dynamics of tumor-infiltrating lymphocytes across different histologies upon checkpoint inhibition: impact on clinical outcome. Araujo B de Lima V; Borch A; Hansen M; Draghi A; Spanggaard I; Rohrberg K; Reker Hadrup S; Lassen U; Svane IM Cytotherapy; 2020 Apr; 22(4):204-213. PubMed ID: 32201034 [TBL] [Abstract][Full Text] [Related]
35. Toward T Cell-Mediated Control or Elimination of HIV Reservoirs: Lessons From Cancer Immunology. Mylvaganam G; Yanez AG; Maus M; Walker BD Front Immunol; 2019; 10():2109. PubMed ID: 31552045 [TBL] [Abstract][Full Text] [Related]
37. Fas/FasL signaling is critical for the survival of exhausted antigen-specific CD8 Yajima T; Hoshino K; Muranushi R; Mogi A; Onozato R; Yamaki E; Kosaka T; Tanaka S; Shirabe K; Yoshikai Y; Kuwano H Mol Immunol; 2019 Mar; 107():97-105. PubMed ID: 30711908 [TBL] [Abstract][Full Text] [Related]
38. Nanoparticle-Based Immunotherapy for Reversing T-Cell Exhaustion. Li F; Wang Y; Chen D; Du Y Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338674 [TBL] [Abstract][Full Text] [Related]
39. Modulation of the immune microenvironment by tumor-intrinsic oncogenic signaling. Nguyen KB; Spranger S J Cell Biol; 2020 Jan; 219(1):. PubMed ID: 31816057 [TBL] [Abstract][Full Text] [Related]
40. Extracellular pH modulating injectable gel for enhancing immune checkpoint inhibitor therapy. Jin HS; Choi DS; Ko M; Kim D; Lee DH; Lee S; Lee AY; Kang SG; Kim SH; Jung Y; Jeong Y; Chung JJ; Park Y J Control Release; 2019 Dec; 315():65-75. PubMed ID: 31669264 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]