These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33633761)

  • 1. Modeling Illustrates That Genomic Selection Provides New Opportunities for Intercrop Breeding.
    Bančič J; Werner CR; Gaynor RC; Gorjanc G; Odeny DA; Ojulong HF; Dawson IK; Hoad SP; Hickey JM
    Front Plant Sci; 2021; 12():605172. PubMed ID: 33633761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crop Rotation and Intercropping Strategies for Weed Management.
    Liebman M; Dyck E
    Ecol Appl; 1993 Feb; 3(1):92-122. PubMed ID: 27759234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breeding Beyond Monoculture: Putting the "Intercrop" Into Crops.
    Bourke PM; Evers JB; Bijma P; van Apeldoorn DF; Smulders MJM; Kuyper TW; Mommer L; Bonnema G
    Front Plant Sci; 2021; 12():734167. PubMed ID: 34868116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana.
    Kermah M; Franke AC; Adjei-Nsiah S; Ahiabor BDK; Abaidoo RC; Giller KE
    Field Crops Res; 2017 Nov; 213():38-50. PubMed ID: 29104356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Syndromes of production in intercropping impact yield gains.
    Li C; Hoffland E; Kuyper TW; Yu Y; Zhang C; Li H; Zhang F; van der Werf W
    Nat Plants; 2020 Jun; 6(6):653-660. PubMed ID: 32483328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the contribution of plant traits to light partitioning in simultaneous maize/soybean intercropping.
    Li S; van der Werf W; Zhu J; Guo Y; Li B; Ma Y; Evers JB
    J Exp Bot; 2021 May; 72(10):3630-3646. PubMed ID: 33608704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated Management of
    Mweke A; Akutse KS; Ulrichs C; Fiaboe KKM; Maniania NK; Ekesi S
    J Fungi (Basel); 2020 May; 6(2):. PubMed ID: 32403358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intercropping enhances soil carbon and nitrogen.
    Cong WF; Hoffland E; Li L; Six J; Sun JH; Bao XG; Zhang FS; Van Der Werf W
    Glob Chang Biol; 2015 Apr; 21(4):1715-26. PubMed ID: 25216023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies Using Genomic Selection to Increase Genetic Gain in Breeding Programs for Wheat.
    Tessema BB; Liu H; Sørensen AC; Andersen JR; Jensen J
    Front Genet; 2020; 11():578123. PubMed ID: 33343626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases.
    Chadfield VGA; Hartley SE; Redeker KR
    New Phytol; 2022 Sep; 235(6):2393-2405. PubMed ID: 35678712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supply Chain Perspectives on Breeding for Legume-Cereal Intercrops.
    Kiær LP; Weedon OD; Bedoussac L; Bickler C; Finckh MR; Haug B; Iannetta PPM; Raaphorst-Travaille G; Weih M; Karley AJ
    Front Plant Sci; 2022; 13():844635. PubMed ID: 35300006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical modelling for sustainable aphid control in agriculture via intercropping.
    Allen-Perkins A; Estrada E
    Proc Math Phys Eng Sci; 2019 Jun; 475(2226):20190136. PubMed ID: 31293361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Crop Growth Models to Assist Breeding for Intercropping: Opportunities and Challenges.
    Weih M; Adam E; Vico G; Rubiales D
    Front Plant Sci; 2022; 13():720486. PubMed ID: 35185972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can cereal-legume intercrop systems contribute to household nutrition in semi-arid environments: A systematic review and meta-analysis.
    Chimonyo VGP; Govender L; Nyathi M; Scheelbeek PFD; Choruma DJ; Mustafa M; Massawe F; Slotow R; Modi AT; Mabhaudhi T
    Front Nutr; 2023; 10():1060246. PubMed ID: 36793925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimum breeding strategies using genomic and phenotypic selection for the simultaneous improvement of two traits.
    Marulanda JJ; Mi X; Utz HF; Melchinger AE; Würschum T; Longin CFH
    Theor Appl Genet; 2021 Dec; 134(12):4025-4042. PubMed ID: 34618174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid transgenerational adaptation in response to intercropping reduces competition.
    Stefan L; Engbersen N; Schöb C
    Elife; 2022 Sep; 11():. PubMed ID: 36097813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting Genetic Gain in Allogamous Crops
    Jighly A; Lin Z; Pembleton LW; Cogan NOI; Spangenberg GC; Hayes BJ; Daetwyler HD
    Front Plant Sci; 2019; 10():1364. PubMed ID: 31803197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic assisted selection for enhancing line breeding: merging genomic and phenotypic selection in winter wheat breeding programs with preliminary yield trials.
    Michel S; Ametz C; Gungor H; Akgöl B; Epure D; Grausgruber H; Löschenberger F; Buerstmayr H
    Theor Appl Genet; 2017 Feb; 130(2):363-376. PubMed ID: 27826661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous selection for grain yield and protein content in genomics-assisted wheat breeding.
    Michel S; Löschenberger F; Ametz C; Pachler B; Sparry E; Bürstmayr H
    Theor Appl Genet; 2019 Jun; 132(6):1745-1760. PubMed ID: 30810763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic selection strategies for clonally propagated crops.
    Werner CR; Gaynor RC; Sargent DJ; Lillo A; Gorjanc G; Hickey JM
    Theor Appl Genet; 2023 Mar; 136(4):74. PubMed ID: 36952013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.