These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 33633765)
1. Mycorrhizal Communities and Isotope Signatures in Two Partially Mycoheterotrophic Orchids. Jacquemyn H; Brys R; Waud M; Evans A; Figura T; Selosse MA Front Plant Sci; 2021; 12():618140. PubMed ID: 33633765 [TBL] [Abstract][Full Text] [Related]
2. Comparison of green and albino individuals of the partially mycoheterotrophic orchid Epipactis helleborine on molecular identities of mycorrhizal fungi, nutritional modes and gene expression in mycorrhizal roots. Suetsugu K; Yamato M; Miura C; Yamaguchi K; Takahashi K; Ida Y; Shigenobu S; Kaminaka H Mol Ecol; 2017 Mar; 26(6):1652-1669. PubMed ID: 28099773 [TBL] [Abstract][Full Text] [Related]
3. Two widespread green Neottia species (Orchidaceae) show mycorrhizal preference for Sebacinales in various habitats and ontogenetic stages. Těšitelová T; Kotilínek M; Jersáková J; Joly FX; Košnar J; Tatarenko I; Selosse MA Mol Ecol; 2015 Mar; 24(5):1122-34. PubMed ID: 25612936 [TBL] [Abstract][Full Text] [Related]
4. You are what you get from your fungi: nitrogen stable isotope patterns in Epipactis species. Schiebold JM; Bidartondo MI; Karasch P; Gravendeel B; Gebauer G Ann Bot; 2017 May; 119(7):1085-1095. PubMed ID: 28334113 [TBL] [Abstract][Full Text] [Related]
5. Plant family identity distinguishes patterns of carbon and nitrogen stable isotope abundance and nitrogen concentration in mycoheterotrophic plants associated with ectomycorrhizal fungi. Hynson NA; Schiebold JM; Gebauer G Ann Bot; 2016 Sep; 118(3):467-79. PubMed ID: 27451987 [TBL] [Abstract][Full Text] [Related]
6. Mycorrhizal Associations and Trophic Modes in Coexisting Orchids: An Ecological Continuum between Auto- and Mixotrophy. Jacquemyn H; Waud M; Brys R; Lallemand F; Courty PE; Robionek A; Selosse MA Front Plant Sci; 2017; 8():1497. PubMed ID: 28912791 [TBL] [Abstract][Full Text] [Related]
7. Novel insights into orchid mycorrhiza functioning from stable isotope signatures of fungal pelotons. Zahn FE; Söll E; Chapin TK; Wang D; Gomes SIF; Hynson NA; Pausch J; Gebauer G New Phytol; 2023 Aug; 239(4):1449-1463. PubMed ID: 37343598 [TBL] [Abstract][Full Text] [Related]
8. Light limitation and partial mycoheterotrophy in rhizoctonia-associated orchids. Schweiger JM; Kemnade C; Bidartondo MI; Gebauer G Oecologia; 2019 Feb; 189(2):375-383. PubMed ID: 30673856 [TBL] [Abstract][Full Text] [Related]
9. Carbon and nitrogen gain during the growth of orchid seedlings in nature. Stöckel M; Těšitelová T; Jersáková J; Bidartondo MI; Gebauer G New Phytol; 2014 Apr; 202(2):606-615. PubMed ID: 24444001 [TBL] [Abstract][Full Text] [Related]
10. The importance of associations with saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently under-estimated: novel evidence from sub-tropical Asia. Lee YI; Yang CK; Gebauer G Ann Bot; 2015 Sep; 116(3):423-35. PubMed ID: 26113634 [TBL] [Abstract][Full Text] [Related]
11. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Jacquemyn H; Waud M; Lievens B; Brys R Ann Bot; 2016 Jul; 118(1):105-14. PubMed ID: 26946528 [TBL] [Abstract][Full Text] [Related]
12. Some mycoheterotrophic orchids depend on carbon from dead wood: novel evidence from a radiocarbon approach. Suetsugu K; Matsubayashi J; Tayasu I New Phytol; 2020 Sep; 227(5):1519-1529. PubMed ID: 31985062 [TBL] [Abstract][Full Text] [Related]
13. Three-year pot culture of Epipactis helleborine reveals autotrophic survival, without mycorrhizal networks, in a mixotrophic species. May M; Jąkalski M; Novotná A; Dietel J; Ayasse M; Lallemand F; Figura T; Minasiewicz J; Selosse MA Mycorrhiza; 2020 Jan; 30(1):51-61. PubMed ID: 31965295 [TBL] [Abstract][Full Text] [Related]
14. Evidence for mycorrhizal cheating in Apostasia nipponica, an early-diverging member of the Orchidaceae. Suetsugu K; Matsubayashi J New Phytol; 2021 Feb; 229(4):2302-2310. PubMed ID: 33118174 [TBL] [Abstract][Full Text] [Related]
15. Molecular evidence supports simultaneous association of the achlorophyllous orchid Chamaegastrodia inverta with ectomycorrhizal Ceratobasidiaceae and Russulaceae. Pecoraro L; Wang X; Venturella G; Gao W; Wen T; Gafforov Y; Gupta VK BMC Microbiol; 2020 Aug; 20(1):236. PubMed ID: 32746782 [TBL] [Abstract][Full Text] [Related]
16. Specialized mycorrhizal association between a partially mycoheterotrophic orchid Oreorchis indica and a Tomentella taxon. Suetsugu K; Haraguchi TF; Tanabe AS; Tayasu I Mycorrhiza; 2021 Mar; 31(2):243-250. PubMed ID: 33150532 [TBL] [Abstract][Full Text] [Related]
17. Limited carbon and mineral nutrient gain from mycorrhizal fungi by adult Australian orchids. Sommer J; Pausch J; Brundrett MC; Dixon KW; Bidartondo MI; Gebauer G Am J Bot; 2012 Jul; 99(7):1133-45. PubMed ID: 22753812 [TBL] [Abstract][Full Text] [Related]
18. 15N and 13C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. Merckx V; Stöckel M; Fleischmann A; Bruns TD; Gebauer G New Phytol; 2010 Oct; 188(2):590-6. PubMed ID: 20618915 [TBL] [Abstract][Full Text] [Related]
19. C and N stable isotope signatures reveal constraints to nutritional modes in orchids from the Mediterranean and Macaronesia. Liebel HT; Bidartondo MI; Preiss K; Segreto R; Stöckel M; Rodda M; Gebauer G Am J Bot; 2010 Jun; 97(6):903-12. PubMed ID: 21622461 [TBL] [Abstract][Full Text] [Related]
20. Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Girlanda M; Segreto R; Cafasso D; Liebel HT; Rodda M; Ercole E; Cozzolino S; Gebauer G; Perotto S Am J Bot; 2011 Jul; 98(7):1148-63. PubMed ID: 21712419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]