These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33633836)

  • 21. Mosquito host preferences affect their response to synthetic and natural odour blends.
    Busula AO; Takken W; Loy DE; Hahn BH; Mukabana WR; Verhulst NO
    Malar J; 2015 Mar; 14():133. PubMed ID: 25889954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional validation of the carbon dioxide receptor genes in Aedes aegypti mosquitoes using RNA interference.
    Erdelyan CN; Mahood TH; Bader TS; Whyard S
    Insect Mol Biol; 2012 Feb; 21(1):119-27. PubMed ID: 22122783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary lability of odour-mediated host preference by the malaria vector Anopheles gambiae.
    Lefèvre T; Gouagna LC; Dabire KR; Elguero E; Fontenille D; Costantini C; Thomas F
    Trop Med Int Health; 2009 Feb; 14(2):228-36. PubMed ID: 19187525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Close encounters: contributions of carbon dioxide and human skin odour to finding and landing on a host in
    Lacey ES; Ray A; Cardé RT
    Physiol Entomol; 2014 Mar; 39(1):60-68. PubMed ID: 24839345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimisation and field validation of odour-baited traps for surveillance of Aedes aegypti adults in Paramaribo, Suriname.
    Visser TM; de Cock MP; Hiwat H; Wongsokarijo M; Verhulst NO; Koenraadt CJM
    Parasit Vectors; 2020 Mar; 13(1):121. PubMed ID: 32143711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae.
    Smallegange RC; Schmied WH; van Roey KJ; Verhulst NO; Spitzen J; Mukabana WR; Takken W
    Malar J; 2010 Oct; 9():292. PubMed ID: 20973963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection and perception of generic host volatiles by mosquitoes: responses to CO
    Majeed S; Hill SR; Dekker T; Ignell R
    R Soc Open Sci; 2017 May; 4(5):170189. PubMed ID: 28573028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of carbon dioxide, octenol and a host-odour as mosquito attractants in the Upper Rhine Valley, Germany.
    Becker N; Zgomba M; Petric D; Ludwig M
    Med Vet Entomol; 1995 Oct; 9(4):377-80. PubMed ID: 8541587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insect repellents mediate species-specific olfactory behaviours in mosquitoes.
    Afify A; Potter CJ
    Malar J; 2020 Mar; 19(1):127. PubMed ID: 32228701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Is Anopheles gambiae attraction to floral and human skin-based odours and their combination modulated by previous blood meal experience?
    Kemibala EE; Mafra-Neto A; Saroli J; Silva R; Philbert A; Ng'habi K; Foster WA; Dekker T; Mboera LEG
    Malar J; 2020 Sep; 19(1):318. PubMed ID: 32873302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signaling Mode of the Broad-Spectrum Conserved CO
    MacWilliam D; Kowalewski J; Kumar A; Pontrello C; Ray A
    Neuron; 2018 Mar; 97(5):1153-1167.e4. PubMed ID: 29429938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maxillary palps are broad spectrum odorant detectors in Culex quinquefasciatus.
    Syed Z; Leal WS
    Chem Senses; 2007 Oct; 32(8):727-38. PubMed ID: 17569743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mosquito responses to carbon dioxide in a west African Sudan savanna village.
    Costantini C; Gibson G; Sagnon N; Della Torre A; Brady J; Coluzzi M
    Med Vet Entomol; 1996 Jul; 10(3):220-7. PubMed ID: 8887331
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Olfactory learning and memory in the disease vector mosquito Aedes aegypti.
    Vinauger C; Lutz EK; Riffell JA
    J Exp Biol; 2014 Jul; 217(Pt 13):2321-30. PubMed ID: 24737761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards a fuller understanding of mosquito behaviour: use of electrocuting grids to compare the odour-orientated responses of Anopheles arabiensis and An. quadriannulatus in the field.
    Torr SJ; Della Torre A; Calzetta M; Costantini C; Vale GA
    Med Vet Entomol; 2008 Jun; 22(2):93-108. PubMed ID: 18498608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological responses from receptor neurons in mosquito maxillary palp sensilla.
    Grant AJ; O'Connell RJ
    Ciba Found Symp; 1996; 200():233-48; discussion 248-53, 281-4. PubMed ID: 8894301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. General Visual and Contingent Thermal Cues Interact to Elicit Attraction in Female Aedes aegypti Mosquitoes.
    Liu MZ; Vosshall LB
    Curr Biol; 2019 Jul; 29(13):2250-2257.e4. PubMed ID: 31257144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a chemosensory receptor from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs.
    Melo AC; Rützler M; Pitts RJ; Zwiebel LJ
    Chem Senses; 2004 Jun; 29(5):403-10. PubMed ID: 15201207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor.
    Pellegrino M; Steinbach N; Stensmyr MC; Hansson BS; Vosshall LB
    Nature; 2011 Sep; 478(7370):511-4. PubMed ID: 21937991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-related changes in female mosquito carbon dioxide detection.
    Grant AJ; O'Connell RJ
    J Med Entomol; 2007 Jul; 44(4):617-23. PubMed ID: 17695016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.