These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 33634313)
1. A sequence-based deep learning approach to predict CTCF-mediated chromatin loop. Lv H; Dao FY; Zulfiqar H; Su W; Ding H; Liu L; Lin H Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634313 [TBL] [Abstract][Full Text] [Related]
2. CLNN-loop: a deep learning model to predict CTCF-mediated chromatin loops in the different cell lines and CTCF-binding sites (CBS) pair types. Zhang P; Wu Y; Zhou H; Zhou B; Zhang H; Wu H Bioinformatics; 2022 Sep; 38(19):4497-4504. PubMed ID: 35997565 [TBL] [Abstract][Full Text] [Related]
3. Deep Learning of Sequence Patterns for CCCTC-Binding Factor-Mediated Chromatin Loop Formation. Kuang S; Wang L J Comput Biol; 2021 Feb; 28(2):133-145. PubMed ID: 33232622 [No Abstract] [Full Text] [Related]
4. Predicting CTCF-mediated chromatin loops using CTCF-MP. Zhang R; Wang Y; Yang Y; Zhang Y; Ma J Bioinformatics; 2018 Jul; 34(13):i133-i141. PubMed ID: 29949986 [TBL] [Abstract][Full Text] [Related]
5. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs. Ibn-Salem J; Andrade-Navarro MA BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198 [TBL] [Abstract][Full Text] [Related]
6. CCIP: predicting CTCF-mediated chromatin loops with transitivity. Wang W; Gao L; Ye Y; Gao Y Bioinformatics; 2021 Dec; 37(24):4635-4642. PubMed ID: 34289010 [TBL] [Abstract][Full Text] [Related]
7. Chromatin loop anchors are associated with genome instability in cancer and recombination hotspots in the germline. Kaiser VB; Semple CA Genome Biol; 2018 Jul; 19(1):101. PubMed ID: 30060743 [TBL] [Abstract][Full Text] [Related]
8. Systematic screening of CTCF binding partners identifies that BHLHE40 regulates CTCF genome-wide distribution and long-range chromatin interactions. Hu G; Dong X; Gong S; Song Y; Hutchins AP; Yao H Nucleic Acids Res; 2020 Sep; 48(17):9606-9620. PubMed ID: 32885250 [TBL] [Abstract][Full Text] [Related]
9. Be-1DCNN: a neural network model for chromatin loop prediction based on bagging ensemble learning. Wu H; Zhou B; Zhou H; Zhang P; Wang M Brief Funct Genomics; 2023 Nov; 22(5):475-484. PubMed ID: 37133976 [TBL] [Abstract][Full Text] [Related]
10. Predicting CTCF-mediated chromatin interactions by integrating genomic and epigenomic features. Kai Y; Andricovich J; Zeng Z; Zhu J; Tzatsos A; Peng W Nat Commun; 2018 Oct; 9(1):4221. PubMed ID: 30310060 [TBL] [Abstract][Full Text] [Related]
11. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci. Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ Front Immunol; 2018; 9():425. PubMed ID: 29593713 [TBL] [Abstract][Full Text] [Related]
12. Robust CTCF-Based Chromatin Architecture Underpins Epigenetic Changes in the Heart Failure Stress-Gene Response. Lee DP; Tan WLW; Anene-Nzelu CG; Lee CJM; Li PY; Luu TDA; Chan CX; Tiang Z; Ng SL; Huang X; Efthymios M; Autio MI; Jiang J; Fullwood MJ; Prabhakar S; Lieberman Aiden E; Foo RS Circulation; 2019 Apr; 139(16):1937-1956. PubMed ID: 30717603 [TBL] [Abstract][Full Text] [Related]
13. CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals. Ruiz-Velasco M; Kumar M; Lai MC; Bhat P; Solis-Pinson AB; Reyes A; Kleinsorg S; Noh KM; Gibson TJ; Zaugg JB Cell Syst; 2017 Dec; 5(6):628-637.e6. PubMed ID: 29199022 [TBL] [Abstract][Full Text] [Related]
14. Inferring CTCF-binding patterns and anchored loops across human tissues and cell types. Xu H; Yi X; Fan X; Wu C; Wang W; Chu X; Zhang S; Dong X; Wang Z; Wang J; Zhou Y; Zhao K; Yao H; Zheng N; Wang J; Chen Y; Plewczynski D; Sham PC; Chen K; Huang D; Li MJ Patterns (N Y); 2023 Aug; 4(8):100798. PubMed ID: 37602215 [TBL] [Abstract][Full Text] [Related]
15. Gain of CTCF-Anchored Chromatin Loops Marks the Exit from Naive Pluripotency. Pękowska A; Klaus B; Xiang W; Severino J; Daigle N; Klein FA; Oleś M; Casellas R; Ellenberg J; Steinmetz LM; Bertone P; Huber W Cell Syst; 2018 Nov; 7(5):482-495.e10. PubMed ID: 30414923 [TBL] [Abstract][Full Text] [Related]
16. Loop competition and extrusion model predicts CTCF interaction specificity. Xi W; Beer MA Nat Commun; 2021 Feb; 12(1):1046. PubMed ID: 33594051 [TBL] [Abstract][Full Text] [Related]
18. A tour of 3D genome with a focus on CTCF. Wang DC; Wang W; Zhang L; Wang X Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214 [TBL] [Abstract][Full Text] [Related]
19. Genomic Marks Associated with Chromatin Compartments in the CTCF, RNAPII Loop and Genomic Windows. Szczepińska T; Mollah AF; Plewczynski D Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769020 [TBL] [Abstract][Full Text] [Related]
20. The murine IgH locus contains a distinct DNA sequence motif for the chromatin regulatory factor CTCF. Ciccone DN; Namiki Y; Chen C; Morshead KB; Wood AL; Johnston CM; Morris JW; Wang Y; Sadreyev R; Corcoran AE; Matthews AGW; Oettinger MA J Biol Chem; 2019 Sep; 294(37):13580-13592. PubMed ID: 31285261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]