BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33634532)

  • 1. Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p-i-n Perovskite Solar Cells.
    Xu G; Xue R; Stuard SJ; Ade H; Zhang C; Yao J; Li Y; Li Y
    Adv Mater; 2021 Apr; 33(13):e2006753. PubMed ID: 33634532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Engineering of PTAA/Perovskites for Improved Crystallinity and Hole Extraction in Inverted Perovskite Solar Cells.
    Li Y; Wang B; Liu T; Zeng Q; Cao D; Pan H; Xing G
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3284-3292. PubMed ID: 34989549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CuCrO
    Gil B; Kim J; Yun AJ; Park K; Cho J; Park M; Park B
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32858913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Nanocrystal Photovoltaics with PTAA as Hole Transport Layer.
    Xu A; Huang Q; Luo K; Qin D; Xu W; Wang D; Hou L
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency improvement of inverted perovskite solar cells enabled by PTAA/MoS
    Hu W; Jin X; Li A; Liu CL; Wang XF
    Nanotechnology; 2022 May; 33(33):. PubMed ID: 35523088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and Stable Vacuum-Free-Processed Perovskite Solar Cells Enabled by a Robust Solution-Processed Hole Transport Layer.
    Chang CY; Tsai BC; Hsiao YC
    ChemSusChem; 2017 May; 10(9):1981-1988. PubMed ID: 28334500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual Optimization of Bulk and Interface via the Synergistic Effect of Ligand Anchoring and Hole Transport Dopant Enables 23.28% Efficiency Inverted Perovskite Solar Cells.
    Zhou X; Luan X; Zhang L; Hu H; Jiang Z; Li Y; Wu J; Liu Y; Chen J; Wang D; Liu C; Chen S; Zhang Y; Zhang M; Peng Y; Troshin PA; Wang X; Mai Y; Xu B
    ACS Nano; 2023 Feb; 17(4):3776-3785. PubMed ID: 36779831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composited Film of Poly(3,4-ethylenedioxythiophene) and Graphene Oxide as Hole Transport Layer in Perovskite Solar Cells.
    Yuan T; Li J; Wang S
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-Processable PEDOT:PSS:α-In
    Wang J; Yu H; Hou C; Zhang J
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26543-26554. PubMed ID: 32403929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer Modification on the NiO
    Lian X; Chen J; Shan S; Wu G; Chen H
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46340-46347. PubMed ID: 32964705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface Regulation by an Ultrathin Wide-Bandgap Halide for Stable and Efficient Inverted Perovskite Solar Cells.
    Sun Q; Zong B; Meng X; Shen B; Li X; Kang B; Silva SRP
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6702-6713. PubMed ID: 35077142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Investigation of the Influence of a Cu
    Lin C; Liu G; Xi X; Wang L; Wang Q; Sun Q; Li M; Zhu B; Lara DP; Zai H
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triphenylamine-Based Conjugated Polyelectrolyte as a Hole Transport Layer for Efficient and Scalable Perovskite Solar Cells.
    Harit AK; Jung ED; Ha JM; Park JH; Tripathi A; Noh YW; Song MH; Woo HY
    Small; 2022 Feb; 18(5):e2104933. PubMed ID: 34846779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Efficiency and Long-Term Stability of Perovskite Solar Cells by Synergistic Effect of Nonhygroscopic Doping in Conjugated Polymer-Based Hole-Transporting Layer.
    Koh CW; Heo JH; Uddin MA; Kwon YW; Choi DH; Im SH; Woo HY
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43846-43854. PubMed ID: 29183108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p-i-n Perovskite Solar Cells.
    Huang P; Wang Z; Liu Y; Zhang K; Yuan L; Zhou Y; Song B; Li Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25323-25331. PubMed ID: 28695726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating ultrafast carrier dynamics in perovskite solar cells with an extended π-conjugated polymeric diketopyrrolopyrrole layer for hole transportation.
    Kulshreshtha C; Clement A; Pascher T; Sundström V; Matyba P
    RSC Adv; 2020 Feb; 10(11):6618-6624. PubMed ID: 35496014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the Impact of Hole Transport Materials on Photostability of Perovskite Films and p-i-n Solar Cells.
    Boldyreva AG; Zhidkov IS; Tsarev S; Akbulatov AF; Tepliakova MM; Fedotov YS; Bredikhin SI; Postnova EY; Luchkin SY; Kurmaev EZ; Stevenson KJ; Troshin PA
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19161-19173. PubMed ID: 32233360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the Interface between Hole Transporting Material and Nanocomposite for Highly Efficient Perovskite Solar Cells.
    Safari Z; Zarandi MB; Giuri A; Bisconti F; Carallo S; Listorti A; Esposito Corcione C; Nateghi MR; Rizzo A; Colella S
    Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31744047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green Solvent Processable, Asymmetric Dopant-Free Hole Transport Layer Material for Efficient and Stable n-i-p Perovskite Solar Cells and Modules.
    Cheng Q; Chen H; Chen W; Ding J; Chen Z; Shen Y; Wu X; Wu Y; Li Y; Li Y
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202312231. PubMed ID: 37750462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoupling Charge Transfer and Transport at Polymeric Hole Transport Layer in Perovskite Solar Cells.
    Sin DH; Ko H; Jo SB; Kim M; Bae GY; Cho K
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6546-53. PubMed ID: 26887635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.