These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33634590)

  • 1. Study of Thermal Expansion Coefficient of Graphene via Raman Micro-Spectroscopy: Revisited.
    Feng Q; Wei D; Su Y; Zhou Z; Wang F; Tian C
    Small; 2021 Mar; 17(12):e2006146. PubMed ID: 33634590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Expansion Coefficient of Monolayer Molybdenum Disulfide Using Micro-Raman Spectroscopy.
    Zhang L; Lu Z; Song Y; Zhao L; Bhatia B; Bagnall KR; Wang EN
    Nano Lett; 2019 Jul; 19(7):4745-4751. PubMed ID: 31184905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress Effects on Temperature-Dependent In-Plane Raman Modes of Supported Monolayer Graphene Induced by Thermal Annealing.
    Wei Y; Wei Z; Zheng X; Liu J; Chen Y; Su Y; Luo W; Peng G; Huang H; Cai W; Deng C; Zhang X; Qin S
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy.
    Yoon D; Son YW; Cheong H
    Nano Lett; 2011 Aug; 11(8):3227-31. PubMed ID: 21728349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rippling ultrafast dynamics of suspended 2D monolayers, graphene.
    Hu J; Vanacore GM; Cepellotti A; Marzari N; Zewail AH
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):E6555-E6561. PubMed ID: 27791028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating the thermal expansion coefficient of graphene: the role of graphene-substrate interactions.
    Shaina PR; George L; Yadav V; Jaiswal M
    J Phys Condens Matter; 2016 Mar; 28(8):085301. PubMed ID: 26823443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delineating the role of ripples on the thermal expansion of 2D honeycomb materials: graphene, 2D h-BN and monolayer (ML)-MoS
    Anees P; Valsakumar MC; Panigrahi BK
    Phys Chem Chem Phys; 2017 Apr; 19(16):10518-10526. PubMed ID: 28387418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Temperature Associated Interface Influence on the Black Phosphorus Nanoflakes.
    Huang P; Guo D; Xie G
    ACS Appl Mater Interfaces; 2017 May; 9(18):15219-15224. PubMed ID: 28445634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Origami with Highly Tunable Coefficient of Thermal Expansion.
    Ho DT; Park HS; Kim SY; Schwingenschlögl U
    ACS Nano; 2020 Jul; 14(7):8969-8974. PubMed ID: 32538615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lightweight 3D Graphene Metamaterials with Tunable Negative Thermal Expansion.
    He P; Du T; Zhao K; Dong J; Liang Y; Zhang Q
    Adv Mater; 2023 Feb; 35(6):e2208562. PubMed ID: 36433757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biaxial compressive strain engineering in graphene/boron nitride heterostructures.
    Pan W; Xiao J; Zhu J; Yu C; Zhang G; Ni Z; Watanabe K; Taniguchi T; Shi Y; Wang X
    Sci Rep; 2012; 2():893. PubMed ID: 23189242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral and flexural phonon thermal transport in graphene and stanene bilayers.
    Hong Y; Zhu C; Ju M; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2017 Mar; 19(9):6554-6562. PubMed ID: 28197566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exceptional in-plane and interfacial thermal transport in graphene/2D-SiC van der Waals heterostructures.
    Islam MS; Mia I; Ahammed S; Stampfl C; Park J
    Sci Rep; 2020 Dec; 10(1):22050. PubMed ID: 33328491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal properties of graphene from path-integral simulations.
    Herrero CP; Ramírez R
    J Chem Phys; 2018 Mar; 148(10):102302. PubMed ID: 29544269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomistic Dynamics Investigation of the Thermomechanical Properties and Li Diffusion Kinetics in ψ-Graphene for LIB Anode Material.
    Thomas S; Nam EB; Lee SU
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36240-36248. PubMed ID: 30259728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy.
    Yan R; Simpson JR; Bertolazzi S; Brivio J; Watson M; Wu X; Kis A; Luo T; Hight Walker AR; Xing HG
    ACS Nano; 2014 Jan; 8(1):986-93. PubMed ID: 24377295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of the temperature dependency in Raman active vibrational modes of molybdenum disulfide atomic layers.
    Najmaei S; Ajayan PM; Lou J
    Nanoscale; 2013 Oct; 5(20):9758-63. PubMed ID: 23963480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2.
    Huang X; Gao Y; Yang T; Ren W; Cheng HM; Lai T
    Sci Rep; 2016 Aug; 6():32236. PubMed ID: 27576751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene bimetallic-like cantilevers: probing graphene/substrate interactions.
    Conley H; Lavrik NV; Prasai D; Bolotin KI
    Nano Lett; 2011 Nov; 11(11):4748-52. PubMed ID: 21970515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.