These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 33634823)

  • 1. Imaging simulation of charged nanowires in TEM with large defocus distance.
    Shi T; Liu S; Tian H; Ding ZJ
    Microscopy (Oxf); 2021 Aug; 70(4):388-393. PubMed ID: 33634823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of transmission electron microscope images of biological specimens.
    Rullgård H; Ofverstedt LG; Masich S; Daneholt B; Oktem O
    J Microsc; 2011 Sep; 243(3):234-56. PubMed ID: 21631500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Projected thickness reconstruction from a single defocused transmission electron microscope image of an amorphous object.
    Liu AC; Paganin DM; Bourgeois L; Nakashima PN
    Ultramicroscopy; 2011 Jul; 111(8):959-68. PubMed ID: 21736866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital reconstruction of bright field phase contrast images from high resolution electron micrographs.
    Kirkland EJ; Siegel BM; Uyeda N; Fujiyoshi Y
    Ultramicroscopy; 1980; 5(4):479-503. PubMed ID: 7006175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscopic charge fluctuations cause minimal contrast loss in cryoEM.
    Russo CJ; Henderson R
    Ultramicroscopy; 2018 Apr; 187():56-63. PubMed ID: 29413413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-film-based Zernike phase plates with smooth thickness gradient for phase-contrast transmission electron microscopy with reduced fringing artefacts.
    Obermair M; Hettler S; Dries M; Hugenschmidt M; Spiecker R; Gerthsen D
    J Microsc; 2022 Jul; 287(1):45-58. PubMed ID: 35438194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local sample thickness determination via scanning transmission electron microscopy defocus series.
    Beyer A; Straubinger R; Belz J; Volz K
    J Microsc; 2016 May; 262(2):171-7. PubMed ID: 26224521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging and analysis of nanowires.
    Bell DC; Wu Y; Barrelet CJ; Gradecak S; Xiang J; Timko BP; Lieber CM
    Microsc Res Tech; 2004 Aug; 64(5-6):373-89. PubMed ID: 15549698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging a dense nanodot assembly by phase retrieval from TEM images.
    Donnadieu P; Verdier M; Berthomé G; Mur P
    Ultramicroscopy; 2004 Jul; 100(1-2):79-90. PubMed ID: 15219693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation and simulation of unstained DNA images in bright field TEM.
    Quintana C; Bonnet N
    Ultramicroscopy; 1982; 10(3):253-6. PubMed ID: 6304965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical aspects of image formation in the aberration-corrected electron microscope.
    Rose H
    Ultramicroscopy; 2010 Apr; 110(5):488-99. PubMed ID: 19896274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of dynamical scattering on quantitative contrast for aberration-corrected transmission electron microscope images.
    Wen C; Smith DJ
    Micron; 2016 Oct; 89():77-86. PubMed ID: 27522350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate determination of local defocus and specimen tilt in electron microscopy.
    Mindell JA; Grigorieff N
    J Struct Biol; 2003 Jun; 142(3):334-47. PubMed ID: 12781660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practical image restoration of thick biological specimens using multiple focus levels in transmission electron microscopy.
    Han KF; Sedat JW; Agard DA
    J Struct Biol; 1997 Dec; 120(3):237-44. PubMed ID: 9441929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SEM Nano: An Electron Wave Optical Simulation for the Scanning Electron Microscope.
    Kamal S; Hailstone RK
    Microsc Microanal; 2022 Feb; ():1-13. PubMed ID: 35190009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FASTDEF: fast defocus and astigmatism estimation for high-throughput transmission electron microscopy.
    Vargas J; Otón J; Marabini R; Jonic S; de la Rosa-Trevín JM; Carazo JM; Sorzano CO
    J Struct Biol; 2013 Feb; 181(2):136-48. PubMed ID: 23261401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification for transmission electron microscope images from different amorphous states using persistent homology.
    Uesugi F; Ishii M
    Microscopy (Oxf); 2022 Jun; 71(3):161-168. PubMed ID: 35284922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of the charging-induced imaging instability in transmission electron microscopy.
    Wang L; Liu D; Zhang F; Zhang Z; Cui J; Jia Z; Yu Z; Lv Y; Liu W
    Nanoscale Adv; 2021 Jun; 3(11):3035-3040. PubMed ID: 36133648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Zernike-type phase contrast for transmission electron microscopy.
    Koeck PJ
    J Microsc; 2015 Jul; 259(1):74-8. PubMed ID: 25865092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.