BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33635139)

  • 1. Methods to Mimic
    Gudagudi KB; Myburgh KH
    OMICS; 2021 Mar; 25(3):176-189. PubMed ID: 33635139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro induction of quiescence in isolated primary human myoblasts.
    Gudagudi KB; d'Entrèves NP; Woudberg NJ; Steyn PJ; Myburgh KH
    Cytotechnology; 2020 Apr; 72(2):189-202. PubMed ID: 31993891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel in vitro model for studying quiescence and activation of primary isolated human myoblasts.
    Sellathurai J; Cheedipudi S; Dhawan J; Schrøder HD
    PLoS One; 2013; 8(5):e64067. PubMed ID: 23717533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.
    Subramaniam S; Sreenivas P; Cheedipudi S; Reddy VR; Shashidhara LS; Chilukoti RK; Mylavarapu M; Dhawan J
    PLoS One; 2014; 8(6):e65097. PubMed ID: 23755177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinguishing States of Arrest: Genome-Wide Descriptions of Cellular Quiescence Using ChIP-Seq and RNA-Seq Analysis.
    Srivastava S; Gala HP; Mishra RK; Dhawan J
    Methods Mol Biol; 2018; 1686():215-239. PubMed ID: 29030824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interleukin-6 Induces Myogenic Differentiation via JAK2-STAT3 Signaling in Mouse C2C12 Myoblast Cell Line and Primary Human Myoblasts.
    Steyn PJ; Dzobo K; Smith RI; Myburgh KH
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31652937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S100B in myoblasts regulates the transition from activation to quiescence and from quiescence to activation and reduces apoptosis.
    Tubaro C; Arcuri C; Giambanco I; Donato R
    Biochim Biophys Acta; 2011 May; 1813(5):1092-104. PubMed ID: 21130124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration.
    Sassoli C; Vallone L; Tani A; Chellini F; Nosi D; Zecchi-Orlandini S
    Cell Tissue Res; 2018 Jun; 372(3):549-570. PubMed ID: 29404727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mRNP granule proteins Fmrp and Dcp1a differentially regulate mRNP complexes to contribute to control of muscle stem cell quiescence and activation.
    Roy N; Sundar S; Pillai M; Patell-Socha F; Ganesh S; Aloysius A; Rumman M; Gala H; Hughes SM; Zammit PS; Dhawan J
    Skelet Muscle; 2021 Jul; 11(1):18. PubMed ID: 34238354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel GFP reporter mouse reveals Mustn1 expression in adult regenerating skeletal muscle, activated satellite cells and differentiating myoblasts.
    Krause MP; Moradi J; Coleman SK; D'Souza DM; Liu C; Kronenberg MS; Rowe DW; Hawke TJ; Hadjiargyrou M
    Acta Physiol (Oxf); 2013 Jun; 208(2):180-90. PubMed ID: 23506283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anchorage-dependent control of muscle-specific gene expression in C2C12 mouse myoblasts.
    Milasincic DJ; Dhawan J; Farmer SR
    In Vitro Cell Dev Biol Anim; 1996 Feb; 32(2):90-9. PubMed ID: 8907122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The primary cilium dampens proliferative signaling and represses a G2/M transcriptional network in quiescent myoblasts.
    Venugopal N; Ghosh A; Gala H; Aloysius A; Vyas N; Dhawan J
    BMC Mol Cell Biol; 2020 Apr; 21(1):25. PubMed ID: 32293249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimicking Muscle Stem Cell Quiescence in Culture: Methods for Synchronization in Reversible Arrest.
    Arora R; Rumman M; Venugopal N; Gala H; Dhawan J
    Methods Mol Biol; 2017; 1556():283-302. PubMed ID: 28247356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CCAAT/enhancer-binding protein beta promotes muscle stem cell quiescence through regulation of quiescence-associated genes.
    Lala-Tabbert N; AlSudais H; Marchildon F; Fu D; Wiper-Bergeron N
    Stem Cells; 2021 Mar; 39(3):345-357. PubMed ID: 33326659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Satellite Cell Niche Regulates the Balance between Myoblast Differentiation and Self-Renewal via p53.
    Flamini V; Ghadiali RS; Antczak P; Rothwell A; Turnbull JE; Pisconti A
    Stem Cell Reports; 2018 Mar; 10(3):970-983. PubMed ID: 29429962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic binge alcohol consumption alters myogenic gene expression and reduces in vitro myogenic differentiation potential of myoblasts from rhesus macaques.
    Simon L; LeCapitaine N; Berner P; Vande Stouwe C; Mussell JC; Allerton T; Primeaux SD; Dufour J; Nelson S; Bagby GJ; Cefalu W; Molina PE
    Am J Physiol Regul Integr Comp Physiol; 2014 Jun; 306(11):R837-44. PubMed ID: 24671243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KLF7 Regulates Satellite Cell Quiescence in Response to Extracellular Signaling.
    Wang X; Shen QW; Wang J; Zhang Z; Feng F; Chen T; Zhang Y; Wei H; Li Z; Wang X; Wang Y
    Stem Cells; 2016 May; 34(5):1310-20. PubMed ID: 26930448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mini-IDLE 3D biomimetic culture assay enables interrogation of mechanisms governing muscle stem cell quiescence and niche repopulation.
    Jacques E; Kuang Y; Kann AP; Le Grand F; Krauss RS; Gilbert PM
    Elife; 2022 Dec; 11():. PubMed ID: 36537758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gene-trap strategy identifies quiescence-induced genes in synchronized myoblasts.
    Sambasivan R; Pavlath GK; Dhawan J
    J Biosci; 2008 Mar; 33(1):27-44. PubMed ID: 18376068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myogenic differentiation of primary myoblasts and mesenchymal stromal cells under serum-free conditions on PCL-collagen I-nanoscaffolds.
    Cai A; Hardt M; Schneider P; Schmid R; Lange C; Dippold D; Schubert DW; Boos AM; Weigand A; Arkudas A; Horch RE; Beier JP
    BMC Biotechnol; 2018 Nov; 18(1):75. PubMed ID: 30477471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.