These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33635415)

  • 21. The role of stratum corneum and dermal microvascular perfusion in penetration and tissue levels of water-soluble drugs investigated by microdialysis.
    Morgan CJ; Renwick AG; Friedmann PS
    Br J Dermatol; 2003 Mar; 148(3):434-43. PubMed ID: 12653734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring Transepidermal Water Loss and Skin Wettedness Factor with Battery-Free NFC Sensor.
    Ali SM; Chung WY
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32998315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of ethanol/propylene glycol on the in vitro percutaneous absorption of aspirin, biophysical changes and macroscopic barrier properties of the skin.
    Levang AK; Zhao K; Singh J
    Int J Pharm; 1999 Apr; 181(2):255-63. PubMed ID: 10370221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of the stratum corneum barrier function by transepidermal water loss measurements: comparison between two commercial instruments: Evaporimeter and Tewameter.
    Barel AO; Clarys P
    Skin Pharmacol; 1995; 8(4):186-95. PubMed ID: 7488395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Racial (ethnic) differences in skin properties: the objective data.
    Wesley NO; Maibach HI
    Am J Clin Dermatol; 2003; 4(12):843-60. PubMed ID: 14640777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Skin barrier function in healthy volunteers as assessed by transepidermal water loss and vascular response to hexyl nicotinate: intra- and inter-individual variability.
    Oestmann E; Lavrijsen AP; Hermans J; Ponec M
    Br J Dermatol; 1993 Feb; 128(2):130-6. PubMed ID: 8457445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of continuous electrical capacitance and transepidermal water loss measurements for assessing barrier function in neonatal rat skin.
    Wickett RR; Nath V; Tanaka R; Hoath SB
    Skin Pharmacol; 1995; 8(4):179-85. PubMed ID: 7488394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Can a handheld device accurately measure barrier function in ichthyoses?
    Murphrey MB; Erickson T; Canter T; Rangel SM; Paller AS
    Pediatr Dermatol; 2020 Sep; 37(5):860-863. PubMed ID: 32748517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transepidermal water loss in dry and clinically normal skin in patients with atopic dermatitis.
    Werner Y; Lindberg M
    Acta Derm Venereol; 1985; 65(2):102-5. PubMed ID: 2408409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Transepidermal Water Loss (TEWL)-decreasing Effect by Administration of Zinc in the Elderly People].
    Deguchi M; Jose H; Nishida K; Ooi K
    Yakugaku Zasshi; 2020; 140(2):313-318. PubMed ID: 32009050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. WASP: Wearable Analytical Skin Probe for Dynamic Monitoring of Transepidermal Water Loss.
    Sivakumar AD; Sharma R; Thota C; Ding D; Fan X
    ACS Sens; 2023 Nov; 8(11):4407-4416. PubMed ID: 37953512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frictional properties of human skin: relation to age, sex and anatomical region, stratum corneum hydration and transepidermal water loss.
    Cua AB; Wilhelm KP; Maibach HI
    Br J Dermatol; 1990 Oct; 123(4):473-9. PubMed ID: 2095179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Penetration rates into the stratum corneum layer: A novel quantitative indicator for assessing skin barrier function.
    Yoo S; Kim J; Jeong ET; Hwang SJ; Kang NG; Lee J
    Skin Res Technol; 2024 Mar; 30(3):e13655. PubMed ID: 38481085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transepidermal water loss in newborns within the first 24 hours of life: baseline values and comparison with adults.
    Raone B; Raboni R; Rizzo N; Simonazzi G; Patrizi A
    Pediatr Dermatol; 2014; 31(2):191-5. PubMed ID: 24383609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impacts of Skin Eccrine Glands on the Measured Values of Transepidermal Water Loss.
    Schwab H; Flora J; Mayrovitz HN
    Cureus; 2022 Dec; 14(12):e32266. PubMed ID: 36620832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in susceptibility to oxidative stress in the skin of Japanese and French subjects and physiological characteristics of their skin.
    Yamashita Y; Okano Y; Ngo T; Buche P; Sirvent A; Girard F; Masaki H
    Skin Pharmacol Physiol; 2012; 25(2):78-85. PubMed ID: 22236795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Closed-chamber transepidermal water loss measurement: microclimate, calibration and performance.
    Imhof RE; De Jesus ME; Xiao P; Ciortea LI; Berg EP
    Int J Cosmet Sci; 2009 Apr; 31(2):97-118. PubMed ID: 19175433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo transepidermal water loss and epidermal occlusive hydration in newborn infants: anatomical region variation.
    Orsmark K; Wilson D; Maibach H
    Acta Derm Venereol; 1980; 60(5):403-7. PubMed ID: 6162311
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of radiant warmer on transepidermal water loss (TEWL) and skin hydration in preterm infants.
    Maayan-Metzger A; Yosipovitch G; Hadad E; Sirota L
    J Perinatol; 2004 Jun; 24(6):372-5. PubMed ID: 15071484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cutaneous homeostasis and epidermal barrier function in a young healthy Caucasian population.
    Espinosa-Rueda MI; Montero-Vilchez T; Martinez-Lopez A; Molina-Leyva A; Sierra-Sánchez A; Arias-Santiago S; Buendia-Eisman A
    Eur J Dermatol; 2021 Apr; 31(2):176-182. PubMed ID: 34001469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.