These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33635518)

  • 1. Biomechanical Basis of Predicting and Preventing Lower Limb Stress Fractures During Arduous Training.
    O'Leary TJ; Rice HM; Greeves JP
    Curr Osteoporos Rep; 2021 Jun; 19(3):308-317. PubMed ID: 33635518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A case-control pilot study of stress fracture in adolescent girls: the discriminative ability of two imaging technologies to classify at-risk athletes.
    Duckham RL; Bialo SR; Machan J; Kriz P; Gordon CM
    Osteoporos Int; 2019 Aug; 30(8):1573-1580. PubMed ID: 31143993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical analysis for stress fractures of the anterior middle third of the tibia in athletes: nonlinear analysis using a three-dimensional finite element method.
    Sonoda N; Chosa E; Totoribe K; Tajima N
    J Orthop Sci; 2003; 8(4):505-13. PubMed ID: 12898301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone geometry and lower extremity bone stress injuries in male runners.
    Popp KL; Frye AC; Stovitz SD; Hughes JM
    J Sci Med Sport; 2020 Feb; 23(2):145-150. PubMed ID: 31594711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Participation in ball sports may represent a prehabilitation strategy to prevent future stress fractures and promote bone health in young athletes.
    Tenforde AS; Sainani KL; Carter Sayres L; Milgrom C; Fredericson M
    PM R; 2015 Feb; 7(2):222-5. PubMed ID: 25499072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ground reaction forces, bone characteristics, and tibial stress fracture in male runners.
    Crossley K; Bennell KL; Wrigley T; Oakes BW
    Med Sci Sports Exerc; 1999 Aug; 31(8):1088-93. PubMed ID: 10449008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone stress in runners with tibial stress fracture.
    Meardon SA; Willson JD; Gries SR; Kernozek TW; Derrick TR
    Clin Biomech (Bristol, Avon); 2015 Nov; 30(9):895-902. PubMed ID: 26282463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone Stress Injuries Are Associated With Differences in Bone Microarchitecture in Male Professional Soldiers.
    Schanda JE; Kocijan R; Resch H; Baierl A; Feichtinger X; Mittermayr R; Plachel F; Wakolbinger R; Wolff K; Fialka C; Gruther W; Muschitz C
    J Orthop Res; 2019 Dec; 37(12):2516-2523. PubMed ID: 31410876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone quality and muscle strength in female athletes with lower limb stress fractures.
    Schnackenburg KE; Macdonald HM; Ferber R; Wiley JP; Boyd SK
    Med Sci Sports Exerc; 2011 Nov; 43(11):2110-9. PubMed ID: 21552163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of high versus low loading on bone strength in middle life.
    Milgrom C; Constantini N; Milgrom Y; Lavi D; Appelbaum Y; Novack V; Finestone A
    Bone; 2012 Apr; 50(4):865-9. PubMed ID: 22252043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk factors for stress fractures in female track-and-field athletes: a retrospective analysis.
    Bennell KL; Malcolm SA; Thomas SA; Ebeling PR; McCrory PR; Wark JD; Brukner PD
    Clin J Sport Med; 1995 Oct; 5(4):229-35. PubMed ID: 7496847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tibial stress injuries. An aetiological review for the purposes of guiding management.
    Beck BR
    Sports Med; 1998 Oct; 26(4):265-79. PubMed ID: 9820925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic anterior tibial stress fractures in athletes: No crack but intense remodeling.
    Schilcher J; Bernhardsson M; Aspenberg P
    Scand J Med Sci Sports; 2019 Oct; 29(10):1521-1528. PubMed ID: 31102562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual stress testing of fracture stability in soldiers with severely comminuted tibial fractures.
    Petfield JL; Hayeck GT; Kopperdahl DL; Nesti LJ; Keaveny TM; Hsu JR;
    J Orthop Res; 2017 Apr; 35(4):805-811. PubMed ID: 27302535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal macro- and microstructure adaptations in men undergoing arduous military training.
    O'Leary TJ; Izard RM; Walsh NP; Tang JCY; Fraser WD; Greeves JP
    Bone; 2019 Aug; 125():54-60. PubMed ID: 31077851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilateral Looser zones or pseudofractures in the anteromedial tibia as a component of medial tibial stress syndrome in athletes.
    Stürznickel J; Jandl NM; Delsmann MM; von Vopelius E; Barvencik F; Amling M; Ueblacker P; Rolvien T; Oheim R
    Knee Surg Sports Traumatol Arthrosc; 2021 May; 29(5):1644-1650. PubMed ID: 32968845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between lower-extremity stress fractures and the ground reaction force: a systematic review.
    Zadpoor AA; Nikooyan AA
    Clin Biomech (Bristol, Avon); 2011 Jan; 26(1):23-8. PubMed ID: 20846765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI of tibial stress fractures: relationship between Fredericson classification and time to recovery in pediatric athletes.
    Ditmars FS; Ruess L; Young CM; Hu HH; MacDonald JP; Ravindran R; Thompson BP
    Pediatr Radiol; 2020 Nov; 50(12):1735-1741. PubMed ID: 32809066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the relationship of calcium and vitamin D in the prevention of stress fracture injuries in the young athlete: a review of the literature.
    Tenforde AS; Sayres LC; Sainani KL; Fredericson M
    PM R; 2010 Oct; 2(10):945-9. PubMed ID: 20970764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased density and periosteal expansion of the tibia in young adult men following short-term arduous training.
    Izard RM; Fraser WD; Negus C; Sale C; Greeves JP
    Bone; 2016 Jul; 88():13-19. PubMed ID: 27046087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.