These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33635857)

  • 1. Balrog: A universal protein model for prokaryotic gene prediction.
    Sommer MJ; Salzberg SL
    PLoS Comput Biol; 2021 Feb; 17(2):e1008727. PubMed ID: 33635857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicrobeAnnotator: a user-friendly, comprehensive functional annotation pipeline for microbial genomes.
    Ruiz-Perez CA; Conrad RE; Konstantinidis KT
    BMC Bioinformatics; 2021 Jan; 22(1):11. PubMed ID: 33407081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies.
    Thakur S; Guttman DS
    BMC Bioinformatics; 2016 Jun; 17(1):260. PubMed ID: 27363390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prokaryotic Genome Annotation.
    Kimbrel JA; Jeffrey BM; Ward CS
    Methods Mol Biol; 2022; 2349():193-214. PubMed ID: 34718997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comprehensive re-annotation of protein-coding genes for prokaryotic genomes by Z-curve and similarity-based methods].
    Liu S; Zeng Z; Zeng FC; Du MZ
    Yi Chuan; 2020 Jul; 42(7):691-702. PubMed ID: 32694108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.
    Paul S; Bhardwaj A; Bag SK; Sokurenko EV; Chattopadhyay S
    Genomics; 2015 Dec; 106(6):367-72. PubMed ID: 26456591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Re-annotation of genome microbial coding-sequences: finding new genes and inaccurately annotated genes.
    Bocs S; Danchin A; Médigue C
    BMC Bioinformatics; 2002; 3():5. PubMed ID: 11879526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes.
    Varani AM; Siguier P; Gourbeyre E; Charneau V; Chandler M
    Genome Biol; 2011; 12(3):R30. PubMed ID: 21443786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Silico Prediction for ncRNAs in Prokaryotes.
    Garcia AC
    Methods Mol Biol; 2021; 2328():277-285. PubMed ID: 34251633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions.
    Besemer J; Lomsadze A; Borodovsky M
    Nucleic Acids Res; 2001 Jun; 29(12):2607-18. PubMed ID: 11410670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P finder: genomic and metagenomic annotation of RNase P RNA gene (rnpB).
    Ellis JC
    BMC Genomics; 2020 Apr; 21(1):334. PubMed ID: 32349659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes.
    Zhu H; Hu GQ; Yang YF; Wang J; She ZS
    BMC Bioinformatics; 2007 Mar; 8():97. PubMed ID: 17367537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroScope-an integrated resource for community expertise of gene functions and comparative analysis of microbial genomic and metabolic data.
    Médigue C; Calteau A; Cruveiller S; Gachet M; Gautreau G; Josso A; Lajus A; Langlois J; Pereira H; Planel R; Roche D; Rollin J; Rouy Z; Vallenet D
    Brief Bioinform; 2019 Jul; 20(4):1071-1084. PubMed ID: 28968784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Genomics for Prokaryotes.
    Setubal JC; Almeida NF; Wattam AR
    Methods Mol Biol; 2018; 1704():55-78. PubMed ID: 29277863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes.
    Xie Z; Tang H
    Bioinformatics; 2017 Nov; 33(21):3340-3347. PubMed ID: 29077810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale prokaryotic gene prediction and comparison to genome annotation.
    Nielsen P; Krogh A
    Bioinformatics; 2005 Dec; 21(24):4322-9. PubMed ID: 16249266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication.
    Tanizawa Y; Fujisawa T; Nakamura Y
    Bioinformatics; 2018 Mar; 34(6):1037-1039. PubMed ID: 29106469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding prokaryotic genes by the 'frame-by-frame' algorithm: targeting gene starts and overlapping genes.
    Shmatkov AM; Melikyan AA; Chernousko FL; Borodovsky M
    Bioinformatics; 1999 Nov; 15(11):874-86. PubMed ID: 10743554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RefSeq microbial genomes database: new representation and annotation strategy.
    Tatusova T; Ciufo S; Fedorov B; O'Neill K; Tolstoy I
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D553-9. PubMed ID: 24316578
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.