These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33636286)

  • 21. Improved immunogold labeling of epoxy sections by the use of propylene oxide as additional agent in dehydration, infiltration and embedding.
    Brorson SH
    Micron; 1996 Oct; 27(5):345-53. PubMed ID: 9008875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid embedding methods into epoxy and LR White resins for morphological and immunological analysis of cryofixed biological specimens.
    McDonald KL
    Microsc Microanal; 2014 Feb; 20(1):152-63. PubMed ID: 24252586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient embedding technique for preparing small specimens for stereological volume estimation: zebrafish larvae.
    Hill AJ; Howard CV; Cossins AR
    J Microsc; 2002 Jun; 206(Pt 3):179-81. PubMed ID: 12067361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peripheral regeneration.
    Chen ZL; Yu WM; Strickland S
    Annu Rev Neurosci; 2007; 30():209-33. PubMed ID: 17341159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyester or epoxy: assessing embedding product efficacy in paleohistological methods.
    Heck CT; Volkmann G; Woodward HN
    PeerJ; 2020; 8():e10495. PubMed ID: 33362969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Capsule-supporting ring: a new device for resin embedding of glass-mounted specimens.
    Sawaguchi A; Aoyama F; Ide S; Suganuma T
    J Microsc; 2009 May; 234(2):113-7. PubMed ID: 19397739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved post-embedding immunocytochemistry of myelinated nervous tissue for electron microscopy.
    Hirst EM; Johnson TC; Li Y; Raisman G
    J Neurosci Methods; 2000 Feb; 95(2):151-8. PubMed ID: 10752486
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures.
    Belu A; Schnitker J; Bertazzo S; Neumann E; Mayer D; Offenhäusser A; Santoro F
    J Microsc; 2016 Jul; 263(1):78-86. PubMed ID: 26820619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New strategies for embedding, orientation and sectioning of small brain specimens enable direct correlation to MR-images, brain atlases, or use of unbiased stereology.
    Bjarkam CR; Pedersen M; Sørensen JC
    J Neurosci Methods; 2001 Jul; 108(2):153-9. PubMed ID: 11478974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The CNS-PNS transitional zone of the rat. Morphometric studies at cranial and spinal levels.
    Fraher JP
    Prog Neurobiol; 1992; 38(3):261-316. PubMed ID: 1546164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Penetration of ruthenium red into peripheral nerve fibers.
    Singer M; Krishnan N; Fyfe DA
    Anat Rec; 1972 Aug; 173(4):375-89. PubMed ID: 5052027
    [No Abstract]   [Full Text] [Related]  

  • 32. Diaminobenzidine as a myelin stain in semithin plastic sections.
    Krueger SK; Phillips DE; Frederick MM; Johnson RK
    Biotech Histochem; 1999 Mar; 74(2):105-9. PubMed ID: 10333408
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thick methacrylate sections devoid of lost caps simplify stereological quantifications based on the optical fractionator design.
    Hasselholt S; Lykkesfeldt J; Overgaard Larsen J
    Anat Rec (Hoboken); 2015 Dec; 298(12):2141-50. PubMed ID: 26370738
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An autometallographic technique for myelin staining in formaldehyde-fixed tissue.
    Larsen M; Bjarkam CR; Stoltenberg M; Sørensen JC; Danscher G
    Histol Histopathol; 2003 Oct; 18(4):1125-30. PubMed ID: 12973681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of myelinated nerve fibers in the sixth cranial nerve of the rat: a quantitative electron microscope study.
    Hahn AF; Chang Y; Webster HD
    J Comp Neurol; 1987 Jun; 260(4):491-500. PubMed ID: 3611408
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Grinding and polishing instead of sectioning for the tissue samples with a graft: Implications for light and electron microscopy.
    Mukhamadiyarov RA; Sevostyanova VV; Shishkova DK; Nokhrin AV; Sidorova OD; Kutikhin AG
    Micron; 2016 Jun; 85():1-7. PubMed ID: 27023831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Handling and staining epoxy resin sections for light microscopy.
    Roberts IM; Hutcheson AM
    J Microsc; 1975 Jan; 103(1):121-6. PubMed ID: 49433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in the myelinated axons of femoral nerve in amyotrophic lateral sclerosis.
    Perrie WT; Lee GT; Curtis EM; Sparke J; Buller JR; Rossi ML
    J Neural Transm Suppl; 1993; 39():223-33. PubMed ID: 8360662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A simple technique for flat osmicating and flat embedding of immunolabelled vibratome sections of the rat spinal cord for light and electron microscopy.
    Nguyen KB; Pender MP
    J Neurosci Methods; 1996 Mar; 65(1):51-4. PubMed ID: 8815308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Blister artifact formation due to organic solvent effects on Spurr's epoxy resin semithin sections.
    Kayton RJ; Aktas RG
    Biotech Histochem; 1998 May; 73(3):157-63. PubMed ID: 9674886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.