These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 33636398)

  • 1. Engineered prime editors with PAM flexibility.
    Kweon J; Yoon JK; Jang AH; Shin HR; See JE; Jang G; Kim JI; Kim Y
    Mol Ther; 2021 Jun; 29(6):2001-2007. PubMed ID: 33636398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.
    Hua K; Tao X; Han P; Wang R; Zhu JK
    Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the Genome-Editing Toolbox with
    Nakamura A; Yamamoto H; Yano T; Hasegawa R; Makino Y; Mitsuda N; Terakawa T; Ito S; Sugano SS
    CRISPR J; 2024 Aug; 7(4):197-209. PubMed ID: 39111827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SpRY: Engineered CRISPR/Cas9 Harnesses New Genome-Editing Power.
    Zhang D; Zhang B
    Trends Genet; 2020 Aug; 36(8):546-548. PubMed ID: 32456805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Editing in Zebrafish by ScCas9 Recognizing NNG PAM.
    Liu Y; Liang F; Dong Z; Li S; Ye J; Qin W
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas nucleases and base editors for plant genome editing.
    Gürel F; Zhang Y; Sretenovic S; Qi Y
    aBIOTECH; 2020 Jan; 1(1):74-87. PubMed ID: 36305010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Base Editing: The Ever Expanding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Tool Kit for Precise Genome Editing in Plants.
    Monsur MB; Shao G; Lv Y; Ahmad S; Wei X; Hu P; Tang S
    Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32344599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes.
    Liu X; Zhou X; Li G; Huang S; Sun W; Sun Q; Li L; Huang X; Liu J; Wang L
    CRISPR J; 2021 Oct; 4(5):710-727. PubMed ID: 34661426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unbiased investigation of specificities of prime editing systems in human cells.
    Kim DY; Moon SB; Ko JH; Kim YS; Kim D
    Nucleic Acids Res; 2020 Oct; 48(18):10576-10589. PubMed ID: 32941652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion.
    Shou J; Li J; Liu Y; Wu Q
    Mol Cell; 2018 Aug; 71(4):498-509.e4. PubMed ID: 30033371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells.
    Petri K; Zhang W; Ma J; Schmidts A; Lee H; Horng JE; Kim DY; Kurt IC; Clement K; Hsu JY; Pinello L; Maus MV; Joung JK; Yeh JJ
    Nat Biotechnol; 2022 Feb; 40(2):189-193. PubMed ID: 33927418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding PAM recognition and enhancing base editing activity of Cas9 variants with non-PI domain mutations derived from xCas9.
    Xie L; Hu Y; Li L; Jiang L; Jiao Y; Wang Y; Zhou L; Tao R; Qu J; Chen Q; Yao S
    FEBS J; 2022 Oct; 289(19):5899-5913. PubMed ID: 35411720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity.
    Wang YM; Wang HZ; Jian YZ; Luo ZT; Shao HW; Zhang WF
    Hum Gene Ther; 2022 Apr; 33(7-8):358-370. PubMed ID: 34963339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9.
    Anders C; Bargsten K; Jinek M
    Mol Cell; 2016 Mar; 61(6):895-902. PubMed ID: 26990992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted gene disruption by CRISPR/xCas9 system in Drosophila melanogaster.
    Ni XY; Zhou ZD; Huang J; Qiao X
    Arch Insect Biochem Physiol; 2020 May; 104(1):e21662. PubMed ID: 32027059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.