These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 33636557)
61. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Troczka B; Zimmer CT; Elias J; Schorn C; Bass C; Davies TG; Field LM; Williamson MS; Slater R; Nauen R Insect Biochem Mol Biol; 2012 Nov; 42(11):873-80. PubMed ID: 22982600 [TBL] [Abstract][Full Text] [Related]
62. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis. Nian XG; He YR; Lu LH; Zhao R Pest Manag Sci; 2015 Dec; 71(12):1675-84. PubMed ID: 25641869 [TBL] [Abstract][Full Text] [Related]
63. Effect of insecticides on the diamondback moth (Lepidoptera: Plutellidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Hill TA; Foster RE J Econ Entomol; 2000 Jun; 93(3):763-8. PubMed ID: 10902328 [TBL] [Abstract][Full Text] [Related]
64. Global identification of microRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.). Zhu B; Li X; Liu Y; Gao X; Liang P Sci Rep; 2017 Jan; 7():40713. PubMed ID: 28098189 [TBL] [Abstract][Full Text] [Related]
65. Suppression of diamondback moth (Lepidoptera: Plutellidae) with an entomopathogenic nematode (Rhabditida: Steinernematidae) and Bacillus thuringiensis Berliner. Baur ME; Kaya HK; Tabashnik BE; Chilcutt CF J Econ Entomol; 1998 Oct; 91(5):1089-95. PubMed ID: 9805498 [TBL] [Abstract][Full Text] [Related]
66. Different cross-resistance patterns in the diamondback moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin Cry1C. Zhao JZ; Li YX; Collins HL; Cao J; Earle ED; Shelton AM J Econ Entomol; 2001 Dec; 94(6):1547-52. PubMed ID: 11777062 [TBL] [Abstract][Full Text] [Related]
67. Bt transgenic crops do not have favorable effects on resistant insects. Tabashnik BE; Carrière Y J Insect Sci; 2004; 4():4. PubMed ID: 15861220 [TBL] [Abstract][Full Text] [Related]
68. The emerging importance of noncoding RNAs in the insecticide tolerance, with special emphasis on Plutella xylostella (Lepidoptera: Plutellidae). Vaschetto LM; Beccacece HM Wiley Interdiscip Rev RNA; 2019 Sep; 10(5):e1539. PubMed ID: 31045325 [TBL] [Abstract][Full Text] [Related]
69. Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Sayyed AH; Crickmore N; Wright DJ Appl Environ Microbiol; 2001 Dec; 67(12):5859-61. PubMed ID: 11722947 [TBL] [Abstract][Full Text] [Related]
70. Baseline susceptibility of the diamondback moth (Lepidoptera: Plutellidae) to chlorantraniliprole in China. Wang X; Li X; Shen A; Wu Y J Econ Entomol; 2010 Jun; 103(3):843-8. PubMed ID: 20568631 [TBL] [Abstract][Full Text] [Related]
71. Insecticides suppress natural enemies and increase pest damage in cabbage. Bommarco R; Miranda F; Bylund H; Björkman C J Econ Entomol; 2011 Jun; 104(3):782-91. PubMed ID: 21735894 [TBL] [Abstract][Full Text] [Related]
72. Effect of insecticides and Plutella xylostella (Lepidoptera: Plutellidae) genotype on a predator and parasitoid and implications for the evolution of insecticide resistance. Liu X; Chen M; Collins HL; Onstad D; Roush R; Zhang Q; Shelton AM J Econ Entomol; 2012 Apr; 105(2):354-62. PubMed ID: 22606803 [TBL] [Abstract][Full Text] [Related]
73. Transcriptome-based identification and characterization of genes commonly responding to five different insecticides in the diamondback moth, Plutella xylostella. Gao Y; Kim K; Kwon DH; Jeong IH; Clark JM; Lee SH Pestic Biochem Physiol; 2018 Jan; 144():1-9. PubMed ID: 29463402 [TBL] [Abstract][Full Text] [Related]
74. Assessment of resistance risk in obliquebanded leafroller (Lepidoptera: Tortricidae) to the reduced-risk insecticides chlorantraniliprole and spinetoram. Sial AA; Brunner JF J Econ Entomol; 2010 Aug; 103(4):1378-85. PubMed ID: 20857751 [TBL] [Abstract][Full Text] [Related]
75. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Sayyed AH; Raymond B; Ibiza-Palacios MS; Escriche B; Wright DJ Appl Environ Microbiol; 2004 Dec; 70(12):7010-7. PubMed ID: 15574894 [TBL] [Abstract][Full Text] [Related]
76. Cross-resistance to Bacillus thuringiensis toxin Cry1Ja in a strain of diamondback moth adapted to artificial diet. Tabashnik BE; Johnson KW; Engleman JT; Baum JA J Invertebr Pathol; 2000 Jul; 76(1):81-3. PubMed ID: 10963409 [No Abstract] [Full Text] [Related]
77. Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Isaria fumosorosea with the insecticides beta-cypermethrin and Bacillus thuringiensis. Nian XG; He YR; Lu LH; Zhao R Pest Manag Sci; 2015 Feb; 71(2):216-24. PubMed ID: 24668916 [TBL] [Abstract][Full Text] [Related]
78. Chlorantraniliprole as a candidate pesticide used in combination with the attracticides for lepidopteran moths. Liu Y; Gao Y; Liang G; Lu Y PLoS One; 2017; 12(6):e0180255. PubMed ID: 28658277 [TBL] [Abstract][Full Text] [Related]
80. Tebufenozide resistance selected in Plutella xylostella and its cross-resistance and fitness cost. Cao G; Han Z Pest Manag Sci; 2006 Aug; 62(8):746-51. PubMed ID: 16752382 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]